Skip to main content

Advertisement

Log in

Space-confined synthesis of CoSe2-NC nanoclusters anchored on honeycomb-like carbon framework towards high-performance lithium sulfur battery

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium–sulfur (Li-S) battery has been considered to be one of the next-generation high-energy-density rechargeable battery systems due to the high theoretical energy density, low cost, and environmental friendliness. However, the commercial application of Li-S battery still faces problems such as sluggish redox kinetics and infamous shuttle effect of sulfur cathode, which result in low sulfur utilization, poor cycle life, and unsatisfied rate performance. Herein, we proposed a CoSe2-NC nanocluster anchored honeycomb-like carbon framework (CoSe2-NC@HCF) as sulfur host aiming to accelerate sulfur conversion and inhibit polysulfide shuttle in Li-S electrochemistry via space-confined growth and in situ selenization. The obtained CoSe2-NC@HCF provides strong chemical adsorption capability and massive polar cobalt active sites as well as abundant and continuous hierarchical pores supplying adequate sulfur storage space and physical confinement. The S/CoSe2-NC@HCF cathode with sulfur content of 83.24 wt% delivers high sulfur utilization with initial discharge capacity of 1212.9 mAhg−1 at 0.1 C, excellent rate performance with 1094.7 mAh·g–1 at 1C rate, and good cyclability with low-capacity decay rate of 0.12% up to 600 cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data presented in this paper are available on request from the corresponding author. All authors share the raw data.

References

  1. Li M, Lu J, Chen ZW et al (2018) Adv Mater 30(33):1800561

    Article  Google Scholar 

  2. Balach J, Linnemann J, Jaumann T et al (2018) J Mater Chem A 6(46):23127–23168

    Article  CAS  Google Scholar 

  3. Fang RP, Zhao SY, Sun ZH et al (2017) Adv Mater 29(48):1606823

    Article  Google Scholar 

  4. Huang S, Huixiang E, Yang Y et al (2021) J Mater Chem A 9(12):7458–7480

    Article  CAS  Google Scholar 

  5. Chen X, Hou T, Persson KA et al (2019) Mater Today 22:142–158

    Article  CAS  Google Scholar 

  6. Bruce PG, Freunberger SA, Hardwick LJ et al (2012) Nat Mater 11(1):19–29

    Article  CAS  Google Scholar 

  7. Yan M, Wang W-P, Yin Y-X et al (2019) Energychem 1(1):100002

    Article  Google Scholar 

  8. Herbert D, Ulam J. Electric dry cells and storage batteries. US Patent US3043896 (1962-07-10)

  9. Li T, Bai X, Gulzar U et al (2019) Adv Funct Mater 29(32):1901730

    Article  Google Scholar 

  10. Liu B, Fang R, Xie D et al (2018) Energy Environ Mater 1(4):196–208

    Article  Google Scholar 

  11. Cheng XB, Yan C, Huang JQ et al (2017) Energy Storage Mater 6:18–25

    Article  Google Scholar 

  12. Nole DA, Moss V. Battery employing lithium - sulphur electrodes with nonaqueous electrolyte.U.S. Patent: 3532543, 1970-10-6

  13. Rao MLB (1968) Inventors; P.R. Mallory &Co., Inc., assignee Organic Electrolyte Cells, US patent 3,413,154 

  14. Su Y, Fu Y, Cochell T et al (2013) Nat Commun 4:2985

    Article  PubMed  Google Scholar 

  15. Diao Y,Xie K,Hong X, et al. Acta Chim Sin, 2013, 71: 508-518.

    Article  CAS  Google Scholar 

  16. Barchasz C, Molton F, Duboc C et al (2012) Anal Chem 84(9):3973–3980

    Article  CAS  PubMed  Google Scholar 

  17. Cheon SE, Ko KS, Cho JH et al (2003) J Electrochem Soc 150(6):A796–A799

    Article  CAS  Google Scholar 

  18. Mikhaylik YV, Akridge JR (2004) J Electrochem Soc 151(11):A1969–A1976

    Article  CAS  Google Scholar 

  19. Li H, Li Y, Zhang L (2022) SusMat 2:34–64

    Article  CAS  Google Scholar 

  20. Ye HL, Sun JG, Zhang SL et al (2019) ACS Nano 13(12):14208–14216

    Article  CAS  PubMed  Google Scholar 

  21. He XR, Zhang YJ, Yang LF et al (2021) Acta Metallurg Sinica-English Lett 34(3):410–416

    Article  CAS  Google Scholar 

  22. Zhang Z, Basu S, Zhu PP et al (2019) Carbon 142:32–39

    Article  CAS  Google Scholar 

  23. Qiao ZS, Zhang YG, Meng ZH et al (2021) Adv Funct Mater 31:2100970

    Article  CAS  Google Scholar 

  24. Bai YL, Li T, Wang Y et al (2020) Int J Energy Res 44(1):70–91

    Article  CAS  Google Scholar 

  25. Jing HZ, Peng BZ, Qian QH et al (2022) Rare Metals 41(5):1743–1752

    Article  Google Scholar 

  26. Shen T, Yang L, Pam ME et al (2020) J Mater Chem A 8(43):22488–22506

    Article  CAS  Google Scholar 

  27. Zhang H, Yang L, Zhang PG et al (2021) Adv Mater 33(21):2008447

    Article  CAS  Google Scholar 

  28. Liu Y, Ma ZY, Yang G et al (2022) Adv Funct Mater 32(12):2109462

    Article  CAS  Google Scholar 

  29. Xing XG, Ling YK, Juan L et al (2023) Rare Metals 42:822–829

    Article  Google Scholar 

  30. Al Salem H, Babu G, Rao CV et al (2015) J Am Chem Soc 137(36):11542–11545

    Article  PubMed  Google Scholar 

  31. Babu G, Ababtain K, Ng KYS et al (2015) Sci Rep 5:8763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang YZ, Adekoya D, Sun JQ et al (2019) Adv Funct Mater 29(5):1807485

    Article  Google Scholar 

  33. Zheng C, Niu SZ, Lv W et al (2017) Nano Energy 33:306–312

    Article  CAS  Google Scholar 

  34. Yaghi OM, Li GM, Li HL (1995) Nature 378(6558):703–706

    Article  CAS  Google Scholar 

  35. Shi J, Kang Q, Mi Y et al (2019) Electrochim Acta 324:134849

    Article  CAS  Google Scholar 

  36. Chabu JM, Zeng K, Chen WS et al (2019) Appl Surf Sci 493:533–540

    Article  CAS  Google Scholar 

  37. Song J, Yu Z, Gordin ML et al (2016) Nano Lett 16(2):864–870

    Article  CAS  PubMed  Google Scholar 

  38. Duan L, Zhao L, Cong H et al (2019) Small 15(7):1804347

    Article  Google Scholar 

  39. Ding ZQ, Li XL, Zhang P et al (2017) New J Chem 41(21):12726–12735

    Article  CAS  Google Scholar 

  40. Xu J, Lawson T, Fan HB et al (2018) Adv Energy Mater 8(10):1702607

    Article  Google Scholar 

  41. Vernhoff FH, Labourt-Ibarre P, Ballal GD (1981) Chem Eng Sci 36(10):1713–1723

    Article  Google Scholar 

  42. Wu HY, Zhang XE, Wu QH et al (2020) Chem Commun 56(1):141–144

    Article  CAS  Google Scholar 

  43. Yue Q, Xiao JY, Mao XW et al (2021) Rare Metals 40(11):3147–3155

    Article  Google Scholar 

  44. Jung JW, Ryu WH, Yu S et al (2016) ACS Appl Mater Interfaces 8(40):26758–26768

    Article  CAS  PubMed  Google Scholar 

  45. Zheng H, Wei H et al (2022) Tungsten 4:269–283

    Article  Google Scholar 

  46. Cao R, Cao M, You H et al (2020) Natl Sci Rev 7(3):609–619

    Article  PubMed  Google Scholar 

  47. Liu S, Xie K, Chen Z, Li Y, Hong X, Xu J, Zhou L, Yuan J, Zheng CJ (2015) Mater Chem A 3(21):11395–11402

    Article  CAS  Google Scholar 

  48. Li Z, Zhang JT, Lou XW (2015) Angewandte Chemie-Int Edition 54(44):12886–12890

    Article  CAS  Google Scholar 

  49. Xie D, Mei S, Xu Y et al (2021) Chemsuschem 14(5):1404–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang FL, Wang H, Ji S et al (2022) Chemphyschem 23(7):e202100811

    Article  CAS  PubMed  Google Scholar 

  51. Wu T, Yang T, Zhang J et al (2021) J Energy Chem 59:220–228

    Article  CAS  Google Scholar 

  52. Park SK, Kim JK, Kang YC (2017) Chem Eng J 328:546–555

    Article  CAS  Google Scholar 

  53. Jing JZ, Yong SG, Cheng DL et al (2018) Electrochim Acta 273:127–135

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21875282, 51702362), Hunan Provincial Natural Science Foundation (Grant Nos. 2022JJ30663), the Scientific Research Project of National University of Defense Technology (Grant Nos. ZK19-27), and significant independent Research Projects for Young Talents of College of Aerospace Science and Engineering, National University of Defense Technology.

Author information

Authors and Affiliations

Authors

Contributions

Sun Xinxing and Gao Hongjing: data curation, formal analysis, and writing, original draft. Liu Shuangke: conceptualization and writing, review and editing. Sun Weiwei: investigation and formal analysis. Li Yujie: project administration and resources. Wang Danqin: project administration and software. Guo Qingpeng: project administration and resources. Hong Xiaobin: methodology and project administration. Xu Jing: project administration and funding acquisition. Zheng Chunman: supervision and investigation.

Corresponding authors

Correspondence to Liu Shuangke or Zheng Chunman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 536 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xinxing, S., Hongjing, G., Shuangke, L. et al. Space-confined synthesis of CoSe2-NC nanoclusters anchored on honeycomb-like carbon framework towards high-performance lithium sulfur battery. Ionics 29, 4707–4722 (2023). https://doi.org/10.1007/s11581-023-05164-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05164-y

Keywords

Navigation