Skip to main content

Advertisement

Log in

Towards superior lithium–sulfur batteries with metal–organic frameworks and their derivatives

  • Review
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Lithium–sulfur batteries (LSBs) are one of the most promising energy storage devices in the future due to their high theoretical specific capacity (1675 mA·h·g–1) and energy density (2600 W·h·kg–1). However, the severe capacity decay caused by the shuttle effect of polysulfides needs to be addressed before the practical application. Metal–organic frameworks (MOFs) and their derivatives are known for their large specific surface area, high porosity, abundant functional groups, and good chemical stability. Thus, they have been widely investigated in LSBs. This review introduces the principles of the LSBs and origination of the shuttle effect first summarizes various methods of limiting polysulfide diffusion by MOFs and their derivatives both in cathodes and separators, and provides an in-depth discussion of the immobilization mechanisms, which helps to understand the advantages and disadvantages of each method. The mechanisms, such as structure and pore size tuning, chemical absorption, and catalytic conversion, are discussed. Finally, based on the method of MOFs and their derivatives to inhibit the diffusion of polysulfides, the application prospect of MOFs and their derivatives in LSBs technology are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [32]. Licensed under CC BY-NC 3.0

Fig. 2

Reproduced with permission from Ref. [29]. Licensed under CC BY 4.0. b TEM image with hollow structure CoS/ImIP. Reproduced with permission from Ref. [41]. Copyright 2019 WILEY–VCH Verlag GmbH & Co. KGaA. c TEM image of V2O3@C, illustrated with a model of the layered lasagna structure. Reproduced with permission from Ref. [42]. Copyright 2020 Royal Society of Chemistry. d Aperture distribution curves of MPCN and MPCN-S composites. Reproduced with permission from Ref. [44]. Copyright 2016 Royal Society of Chemistry. e Pore size distribution of NC/CNT. Reproduced with permission from Ref. [45]. Copyright 2019 Elsevier. f Long-term cycling performance of cells with Celgard and PSS@HKUST-1/Celgard-7.5%, with a sulfur loading of 1.3 mg·cm–2. Reproduced with permission from Ref. [47]. Copyright 2018 American Chemical Society. g Simulated crystal structure of Cu2(CuTCPP). Reproduced with permission from Ref. [48]. Copyright 2019 Elsevier

Fig. 3

Reproduced with permission from Ref [51]. Copyright 2018 Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [8]. Copyright 2019 American Chemical Society. b Illustration of the sulfur-loading effect and the interaction with LiPS during the galvanostatic charge/discharge process. Reproduced with permission from Ref. [64]. Copyright 2022 WILEY–VCH Verlag GmbH & Co. KGaA. c Preparation schematic diagram of S/NiO-NiCo2O4@ppy. Reproduced with permission from Ref. [62]. Copyright 2019 Royal Society of Chemistry. d Schematic diagram of Mo2C-C NOs@S composite material preparation strategy. Reproduced with permission from Ref. [56]. Copyright 2020 Elsevier. e Cyclic performance of S/CoS2-NC, S/NC and S/super P electrodes at 0.2 C for 100 cycles. Reproduced with permission from Ref. [63] Copyright 2018 Elsevier. f X-ray diffraction patterns of ZIF-67@SPAN-CNT and Co2S-SPAN-CNT. Reproduced with permission from Ref. [66] Copyright 2020 American Chemical Society. g Absorption energies of Li2Sn and S8 species on the surface of NixCo3-xS4/N-doped carbides. Reproduced with permission from Ref. [58]. Copyright 2020 Elsevier

Fig. 5

Copyright 2018 Elsevier. d Cycle performance at 0.5 C of LSBs assembled with different partitions (NOF: Ni-MOF). Reproduced with permission from Ref. [69]. Copyright 2018 Elsevier

Fig. 6

Reproduced with permission from Ref. [71]. Copyright 2019 American Chemical Society. b Cycling performance of LSBs with different separators running 1000 cycles (2.0 mg·cm–2 sulfur load) at 2 C. Reproduced with permission from Ref. [72]. Copyright 2020 Elsevier. c Diagram of the preparation process of P-CoS2 nano-boxes. Reproduced with permission from Ref. [73]. Copyright 2021 American Chemical Society. d Cyclic performance of FeSA-CN/S electrode at 4.0 C. Reproduced with permission from Ref. [74]. Copyright 2020 Royal Society of Chemistry

Fig. 7

Reproduced with permission from Ref. [78]. Copyright 2018 Royal Society of Chemistry. b Pictures of Li2S6 solution and Li2S6 solution after adding Z-CoS2, commercial CoS2, and ZIF-67 powder. Reproduced with permission from Ref. [79]. Copyright 2019 Royal Society of Chemistry

Similar content being viewed by others

References

  1. He YB, Chang Z, Wu SC, Zhou HS. Effective strategies for long-cycle life lithium–sulfur batteries. J Mater Chem A. 2018;6(15):6155.

    CAS  Google Scholar 

  2. Zhang G, Zhang ZW, Peng HJ, Huang JQ, Zhang Q. A toolbox for lithium–sulfur battery research: methods and protocols. Small Methods. 2017;1(7):1700134.

    Google Scholar 

  3. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.

    CAS  Google Scholar 

  4. Ren WC, Ma W, Umair MM, Zhang SF, Tang BT. CoO/Co-activated porous carbon cloth cathode for high performance Li–S batteries. Chemsuschem. 2018;11(16):2695.

    CAS  Google Scholar 

  5. Zheng FC, Yang Y, Chen QW. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun. 2014;5(1):5261.

    CAS  Google Scholar 

  6. Zhang L, Wu HB, Madhavi S, Hng HH, Lou XW. Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J Am Chem Soc. 2012;134(42):17388.

    CAS  Google Scholar 

  7. Gu XX, Lai C. One dimensional nanostructures contribute better Li–S and Li–Se batteries: progress, challenges and perspectives. Energy Storage Mater. 2019;23:190.

    Google Scholar 

  8. Baumann AE, Han X, Butala MM, Thoi VS. Lithium thiophosphate functionalized zirconium MOFs for Li–S batteries with enhanced rate capabilities. J Am Chem Soc. 2019;141(44):17891.

    CAS  Google Scholar 

  9. Fan YP, Niu ZH, Zhang F, Zhang R, Zhao Y, Lu G. Suppressing the shuttle effect in lithium–sulfur batteries by a UiO-66-modified polypropylene separator. ACS Omega. 2019;4(6):10328.

    CAS  Google Scholar 

  10. Gu HY, Wang HK, Zhang R, Yao TH, Liu T, Wang JK, Han XG, Cheng YH. Hollow carbon nanoballs coupled with ultrafine TiO2 nanoparticles as efficient sulfur hosts for lithium–sulfur batteries. Ind Eng Chem Res. 2019;58(39):18197.

    CAS  Google Scholar 

  11. Bai SY, Zhu K, Wu SC, Wang YR, Yi J, Ishida M, Zhou HS. A long-life lithium–sulphur battery by integrating zinc–organic framework based separator. J Mater Chem A. 2016;4(43):16812.

    CAS  Google Scholar 

  12. Deng NP, Liu Y, Li QX, Yan J, Lei WW, Wang G, Wang LY, Liang YY, Kang WM, Cheng BW. Functional mechanism analysis and customized structure design of interlayers for high performance Li-S battery. Energy Storage Mater. 2019;23:314.

    Google Scholar 

  13. Zhang YZ, Wang RC, Tang WQ, Zhan L, Zhao SL, Kang Q, Wang YL, Yang SB. Efficient polysulfide barrier of a graphene aerogel–carbon nanofibers–Ni network for high-energy-density lithium–sulfur batteries with ultrahigh sulfur content. J Mater Chem A. 2018;6(42):20926.

    CAS  Google Scholar 

  14. Yang DZ, Zhi RY, Ruan DQ, Yan WQ, Zhu YS, Chen YH, Fu LJ, Holze R, Zhang Y, Wu YP, Wang XD. A multifunctional separator for high-performance lithium-sulfur batteries. Electrochim Acta. 2020;334:135486.

    CAS  Google Scholar 

  15. Dong Q, Shen RP, Li CP, Gan RY, Ma XT, Wang JC, Li J, Wei ZD. Construction of soft base tongs on separator to grasp polysulfides from shuttling in lithium–sulfur batteries. Small. 2018;14(52):1804277.

    Google Scholar 

  16. Huang JK, Li ML, Wan Y, Dey S, Ostwal M, Zhang DL, Yang CW, Su CJ, Jeng US, Ming J, Amassian A, Lai ZP, Han Y, Li S, Li LJ. Functional two-dimensional coordination polymeric layer as a charge barrier in Li–S batteries. ACS Nano. 2018;12(1):836.

    CAS  Google Scholar 

  17. Qu L, Liu P, Yi YK, Wang T, Yang P, Tian XL, Li MT, Yang BL, Dai S. Enhanced cycling performance for lithium–sulfur batteries by a laminated 2D g-C3N4/graphene cathode interlayer. Chemsuschem. 2019;12(1):213.

    CAS  Google Scholar 

  18. Hu W, Hirota Y, Zhu YX, Yoshida N, Miyamoto M, Zheng T, Nishiyama N. Separator decoration with cobalt/nitrogen codoped carbon for highly efficient polysulfide confinement in lithium–sulfur batteries. Chemsuschem. 2017;10(18):3557.

    CAS  Google Scholar 

  19. Xie J, Peng HJ, Huang JQ, Xu WT, Chen X, Zhang Q. A supramolecular capsule for reversible polysulfide storage/delivery in lithium-sulfur batteries. Angew Chemie. 2017;129(51):16441.

    Google Scholar 

  20. Zhang LL, Chen X, Wan F, Niu ZQ, Wang YJ, Zhang Q, Chen J. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium–sulfur batteries. ACS Nano. 2018;12(9):9578.

    CAS  Google Scholar 

  21. Gao GJ, Feng WJ, Su WX, Wang SJ, Chen LJ, Li MM, Song CK. Preparation and modification of MIL-101 (Cr) metal organic framework and its application in lithium-sulfur batteries. Int J Electrochem Sci. 2020;15:1426.

    CAS  Google Scholar 

  22. Li T, Bai X, Gulzar U, Bai YJ, Capiglia C, Deng W, Zhou XF, Liu ZP, Feng ZF, Zaccaria RP. A comprehensive understanding of lithium–sulfur battery technology. Adv Funct Mater. 2019;29(32):1901730.

    Google Scholar 

  23. Zhao HJ, Deng NP, Kang WM, Wang G, Hao Y, Zhang YF, Cheng BW. The significant effect of octa (aminophenyl) silsesquioxane on the electrospun ion-selective and ultra-strong poly-m-phenyleneisophthalamide separator for enhanced electrochemical performance of lithium-sulfur battery. Chem Eng J. 2020;381:122715.

    CAS  Google Scholar 

  24. Han DD, Wang ZY, Pan GL, Gao XP. Metal–organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium–sulfur battery. ACS Appl Mater Interfaces. 2019;11(20):18427.

    CAS  Google Scholar 

  25. Han J, Gao S, Wang RX, Wang KL, Jiang M, Yan J, Jiang K. Thermal modulation of MOF and its application in lithium–sulfur batteries. ACS Appl Mater Interfaces. 2019;11(50):46792.

    CAS  Google Scholar 

  26. Hao ZX, Yuan LX, Li Z, Liu J, Xiang JW, Wu C, Zeng R, Huang YH. High performance lithium-sulfur batteries with a facile and effective dual functional separator. Electrochim Acta. 2016;200:197.

    CAS  Google Scholar 

  27. Chen HH, Xiao YW, Chen C, Yang JY, Gao C, Chen YS, Wu JS, Shen Y, Zhang WN, Li S, Huo FW, Zheng B. Conductive MOF-modified separator for mitigating the shuttle effect of lithium–sulfur battery through a filtration method. ACS Appl Mater Interfaces. 2019;11(12):11459.

    CAS  Google Scholar 

  28. Shrivastav V, Sundriyal S, Goel P, Kaur H, Tuteja SK, Vikrant K, Kim KH, Tiwari UK, Deep A. Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: novel means for alternative energy storage. Coord Chem Rev. 2019;393:48.

    CAS  Google Scholar 

  29. Han GD, Wang X, Yao J, Zhang M, Wang J. The application of indium oxide@ CPM-5-C-600 composite material derived from MOF in cathode material of lithium sulfur batteries. Nanomaterials. 2020;10(1):177.

    CAS  Google Scholar 

  30. Peng HJ, Huang JQ, Cheng XB, Zhang Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv Energy Mater. 2017;7(24):1700260.

    Google Scholar 

  31. Ren WC, Ma W, Zhang SF, Tang BT. Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 2019;23:707.

    Google Scholar 

  32. Wang DW, Zeng QC, Zhou GM, Yin LC, Li F, Cheng HM, Gentle IR, Lu GQM. Carbon–sulfur composites for Li–S batteries: status and prospects. J Mater Chem A. 2013;1(33):9382.

    CAS  Google Scholar 

  33. Rana M, Li M, Huang X, Luo B, Gentle I, Knibbe R. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J Mater Chem A. 2019;7(12):6596.

    CAS  Google Scholar 

  34. Li TT, He C, Zhang WX. Two-dimensional porous transition metal organic framework materials with strongly anchoring ability as lithium-sulfur cathode. Energy Storage Mater. 2020;25:866.

    Google Scholar 

  35. Zhong YJ, Xu XM, Liu Y, Wang W, Shao ZP. Recent progress in metal–organic frameworks for lithium–sulfur batteries. Polyhedron. 2018;155:464.

    CAS  Google Scholar 

  36. Li S, Xu P, Aslam MK, Chen CG, Rashid A, Wang GL, Zhang L, Mao BW. Propelling polysulfide conversion for high-loading lithium–sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes. Energy Storage Mater. 2020;27:51.

    Google Scholar 

  37. Chang Z, Qiao Y, Wang J, Deng H, He P, Zhou HS. Fabricating better metal-organic frameworks separators for Li–S batteries: pore sizes effects inspired channel modification strategy. Energy Storage Mater. 2020;25:164.

    Google Scholar 

  38. Wu HW, Huang Y, Xu S, Zhang WC, Wang K, Zong M. Fabricating three-dimensional hierarchical porous N-doped graphene by a tunable assembly method for interlayer assisted lithium-sulfur batteries. Chem Eng J. 2017;327:855.

    CAS  Google Scholar 

  39. Wang ZS, Xu XJ, Liu ZB, Ji SM, Idris SOA, Liu J. Hollow spheres of Mo2C@C as synergistically confining sulfur host for superior Li–S battery cathode. Electrochim Acta. 2020;332: 135482.

    CAS  Google Scholar 

  40. Skoda D, Kazda T, Munster L, Hanulikova B, Styskalik A, Eloy P, Debecker DP, Vyroubal, Simonikova L, Kuritka I. Microwave-assisted synthesis of a manganese metal–organic framework and its transformation to porous MnO/carbon nanocomposite utilized as a shuttle suppressing layer in lithium–sulfur batteries. J Mater Sci. 2019;54(22):14102.

    CAS  Google Scholar 

  41. Li ZL, Xiao ZB, Li PY, Meng XP, Wang RH. Enhanced chemisorption and catalytic effects toward polysulfides by modulating hollow nanoarchitectures for long-life lithium–sulfur batteries. Small. 2020;16(4):1906114.

    CAS  Google Scholar 

  42. Yang J, Wang B, Jin F, Ning Y, Luo H, Zhang J, Wang F, Wang DL, Zhou Y. A MIL-47 (V) derived hierarchical lasagna-structured V2O3@ C hollow microcuboid as an efficient sulfur host for high-performance lithium–sulfur batteries. Nanoscale. 2020;12(7):4552.

    CAS  Google Scholar 

  43. Li GC, Jiang XL, Liu C, Song MC, Yang SL, Lian JB, Lee JY. A microporous carbon derived from metal-organic frameworks for long-life lithium sulfur batteries. Int J Energy Res. 2020;44(3):2126.

    CAS  Google Scholar 

  44. Qian XY, Jin LN, Wang SW, Yao SS, Rao DW, Shen XQ, Xi XM, Xiang J. Zn-MOF derived micro/meso porous carbon nanorod for high performance lithium–sulfur battery. RSC Adv. 2016;6(97):94629.

    CAS  Google Scholar 

  45. Walle MD, Zhang MY, Zeng K, Li YJ, Liu YN. MOFs-derived nitrogen-doped carbon interwoven with carbon nanotubes for high sulfur content lithium–sulfur batteries. Appl Surf Sci. 2019;497:143773.

    CAS  Google Scholar 

  46. He YB, Chang Z, Wu SC, Qiao Y, Bai SY, Jiang KZ, He P, Zhou HS. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li–S batteries. Adv Energy Mater. 2018;8(34):1802130.

    Google Scholar 

  47. Guo Y, Sun MH, Liang HQ, Ying W, Zeng XQ, Ying YL, Zhou SD, Liang CD, Lin Z, Peng XS. Blocking polysulfides and facilitating lithium-ion transport: polystyrene sulfonate@HKUST-1 membrane for lithium–sulfur batteries. ACS Appl Mater Interfaces. 2018;10(36):30451.

    CAS  Google Scholar 

  48. Tian M, Pei F, Yao MS, Fu ZH, Lin LL, Wu GD, Xu G, Kitagawa H, Fang XL. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Storage Mater. 2019;21:14.

    Google Scholar 

  49. Suriyakumar S, Kanagaraj M, Kathiresan M, Angulakshmi N, Thomas S, Stephan AM. Metal-organic frameworks based membrane as a permselective separator for lithium-sulfur batteries. Electrochim Acta. 2018;265:151.

    CAS  Google Scholar 

  50. Li WL, Ye YS, Qian J, Xing Y, Qu W, Zhang NX, Li L, Wu F, Chen RJ. Oxygenated nitrogen-doped microporous nanocarbon as a permselective interlayer for ultrastable lithium-sulfur batteries. ChemElectroChem. 2019;6(4):1094.

    CAS  Google Scholar 

  51. Suriyakumar S, Stephan AM, Angulakshmi N, Hassan MH, Alkordi MH. Metal–organic framework@SiO2 as permselective separator for lithium–sulfur batteries. J Mater Chem A. 2018;6(30):14623.

    CAS  Google Scholar 

  52. Wang XB, Zhao CR, Liu BX, Zhao SQ, Zhang YG, Qian LT, Chen ZJ, Wang JT, Wang X, Chen ZW. Creating edge sites within the 2D metal-organic framework boosts redox kinetics in lithium–sulfur batteries. Adv Energy Mater. 2022. https://doi.org/10.1002/aenm.202201960.

    Article  Google Scholar 

  53. Lei TY, Chen W, Lv WQ, Huang JW, Zhu J, Chu JW, Yan CY, Wu CY, Yan YC, He WD, Xiong J, Li YR, Yan CL, Goodenough JB, Duan XF. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule. 2018;2(10):2091.

    CAS  Google Scholar 

  54. Ye ZQ, Jiang Y, Li L, Wu F, Chen RJ. Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv Mater. 2021;33(33):2101204.

    CAS  Google Scholar 

  55. Xiao YB, Guo SJ, Ouyang Y, Li DX, Li X, He WC, Deng HY, Gong W, Tan C, Zeng QH, Zhang Q, Huang SM. Constructing heterogeneous structure in metal–organic framework-derived hierarchical sulfur hosts for capturing polysulfides and promoting conversion kinetics. ACS Nano. 2021;15(11):18363.

    CAS  Google Scholar 

  56. Chen GL, Li YJ, Zhong WT, Zheng FH, Hu JH, Ji XH, Liu WZ, Yang CH, Lin Z, Liu ML. MOFs-derived porous Mo2C–C nano-octahedrons enable high-performance lithium–sulfur batteries. Energy Storage Mater. 2020;25:547.

    Google Scholar 

  57. Shanthi PM, Hanumantha PJ, Kuruba R, Gattu B, Datta MK, Kumta PN. Effective bipyridine and pyrazine-based polysulfide dissolution resistant complex framework material systems for high capacity rechargeable lithium–sulfur batteries. Energy Technol. 2019;7(12):1900141.

    CAS  Google Scholar 

  58. Liu BB, Fan KL, Li JH, Liu GY, Liu YC, Yang CM, Tong HX, Han K, Qian D. Carbon nanotubes-intercalated Co-NC as a robust sulfur host for lithium-sulfur batteries. Mater Res Bull. 2020;121:110625.

    CAS  Google Scholar 

  59. Yi YK, Liu ZC, Yang P, Wang T, Zhao XW, Huang HY, Cheng YH, Zhang JY, Li MT. MoS2 nanorods with inner caves through synchronous encapsulation of sulfur for high performance Li–S cathodes. J Energy Chem. 2020;45:18.

    Google Scholar 

  60. Razzaq AA, Yuan XT, Chen YJ, Hu JP, Mu QQ, Ma Y, Zhao XH, Miao LX, Ahn JH, Peng Y, Deng Z. Anchoring MOF-derived CoS2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium–sulfur batteries. J Mater Chem A. 2020;8(3):1298.

    Google Scholar 

  61. Li CX, Li ZQ, Li Q, Zhang ZW, Dong SH, Yin LW. MOFs derived hierarchically porous TiO2 as effective chemical and physical immobilizer for sulfur species as cathodes for high-performance lithium-sulfur batteries. Electrochim Acta. 2016;215:689.

    CAS  Google Scholar 

  62. Xu FC, Jin B, Li H, Ju WT, Wen Z, Jiang Q. MOF-derived NiO–NiCo2O4@ PPy hollow polyhedron as a sulfur immobilizer for lithium–sulfur batteries. New J Chem. 2019;43(46):18294.

    CAS  Google Scholar 

  63. Luo SQ, Zheng CM, Sun WW, Wang YQ, Ke JH, Guo QP, Liu SK, Hong XB, Li YJ, Xie W. Multi-functional CoS2-NC porous carbon composite derived from metal-organic frameworks for high performance lithium-sulfur batteries. Electrochim Acta. 2018;289:94.

    CAS  Google Scholar 

  64. Geng PB, Wang L, Du M, Bai Y, Li WT, Liu YF, Chen SQ, Braunstein P, Xu Q, Pang H. MIL-96-Al for Li–S batteries: shape or size? Adv Mater. 2022;34(4):2107836.

    CAS  Google Scholar 

  65. Wang K, Li WY, Ye WK, Yin WH, Chai WW, Qu Y, Rui YC, Tang BHJ. Zeolitic-imidazolate framework combined with MnO2 as the sulfur host material with excellent performance in lithium-sulfur batteries. J Alloys Compd. 2019;793:16.

    CAS  Google Scholar 

  66. Liao XB, Li ZH, He Q, Xia LX, Li Y, Zhu SH, Wang MM, Wang H, Xu X, Mai LQ, Zhao Y. Three-dimensional porous nitrogen-doped carbon nanosheet with embedded NixCo3–xS4 nanocrystals for advanced lithium–sulfur batteries. ACS Appl Mater Interfaces. 2020;12(8):9181.

    CAS  Google Scholar 

  67. Li YJ, Lin SY, Wang DD, Gao TT, Song JW, Zhou P, Xun ZK, Yang ZH, Xiao N, Guo SJ. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium–sulfur batteries. Adv Mater. 2020;32(8):1906722.

    CAS  Google Scholar 

  68. Wu F, Zhao SY, Chen L, Lu Y, Su YF, Jia YN, Bao LY, Wang J, Chen S, Chen RJ. Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries. Energy Storage Mater. 2018;14:383.

    Google Scholar 

  69. Lee DH, Ahn JH, Park MS, Eftekhari A, Kim DW. Metal-organic framework/carbon nanotube-coated polyethylene separator for improving the cycling performance of lithium-sulfur cells. Electrochim Acta. 2018;283:1291.

    CAS  Google Scholar 

  70. Zhang X, Fan Y, Khan MA, Zhao HB, Ye DX, Wang JL, Yue BH, Fang JH, Xu JQ, Zhang L, Zhang JJ. Co-Ni binary-metal oxide coated with porous carbon derived from metal-organic framework as host of nano-sulfur for lithium-sulfur batteries. Batter Supercaps. 2020;3(1):108.

    CAS  Google Scholar 

  71. Hong XJ, Song CL, Yang Y, Tan HC, Li GH, Cai YP, Wang HX. Cerium based metal–organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries. ACS Nano. 2019;13(2):1923.

    CAS  Google Scholar 

  72. Song CL, Li GH, Yang Y, Hong XJ, Huang S, Zheng QF, Si LP, Zhang M, Cai YP. 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery. Chem Eng J. 2020;381:122701.

    CAS  Google Scholar 

  73. Liu J, Qiao Z, Xie Q, Peng DL, Xie RJ. Phosphorus-doped metal–organic framework-derived CoS2 nanoboxes with improved adsorption-catalysis effect for Li–S batteries. ACS Appl Mater Interfaces. 2021;13(13):15226.

    CAS  Google Scholar 

  74. Wang CG, Song HW, Yu CC, Ullah Z, Guan ZX, Chu RR, Zhang YF, Zhao LY, Li Q, Liu LW. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J Mater Chem A. 2020;8(6):3421.

    CAS  Google Scholar 

  75. Li WD, Gong ZJ, Yan XJ, Wang DZ, Liu J, Guo XS, Zhang ZH, Li GC. In situ engineered ZnS–FeS heterostructures in N-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries. J Mater Chem A. 2020;8(1):433.

    CAS  Google Scholar 

  76. Wu QP, Yao ZG, Zhou XJ, Xu J, Cao FH, Li CL. Built-in catalysis in confined nanoreactors for high-loading Li–S batteries. ACS Nano. 2020;14(3):3365.

    CAS  Google Scholar 

  77. Liu GX, Feng K, Cui HT, Li J, Liu YY, Wang MR. MOF derived in-situ carbon-encapsulated Fe3O4@C to mediate polysulfides redox for ultrastable Lithium-sulfur batteries. Chem Eng J. 2020;381:122652.

    CAS  Google Scholar 

  78. Yang YX, Wang ZH, Jiang TZ, Dong C, Mao Z, Lu CY, Sun W, Sun KN. A heterogenized Ni-doped zeolitic imidazolate framework to guide efficient trapping and catalytic conversion of polysulfides for greatly improved lithium–sulfur batteries. J Mater Chem A. 2018;6(28):13593.

    CAS  Google Scholar 

  79. Zhang N, Yang Y, Feng XR, Yu SH, Seok J, Muller DA, Abruna HD. Sulfur encapsulation by MOF-derived CoS2 embedded in carbon hosts for high-performance Li–S batteries. J Mater Chem A. 2019;7(37):21128.

    CAS  Google Scholar 

  80. Zang Y, Pei F, Huang JH, Fu ZH, Xu G, Fang XL. Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium–sulfur batteries. Adv Energy Mater. 2018;8(31):1802052.

    Google Scholar 

  81. Li ML, Wan Y, Huang JK, Assen AH, Hsiung CE, Jiang H, Han Y, Eddaoudi M, Lai ZP, Ming J, Li LJ. Metal–organic framework-based separators for enhancing Li–S battery stability: mechanism of mitigating polysulfide diffusion. ACS Energy Lett. 2017;2(10):2362.

    CAS  Google Scholar 

  82. Deng SZ, Yan YC, Wei LQ, Li T, Su X, Yang XJ, Li ZT, Wu MB. Amorphous Al2O3 with N-doped porous carbon as efficient polysulfide barrier in Li–S batteries. ACS Appl Energy Mater. 2019;2(2):1266.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52272258), the Fundamental Research Funds for the Central Universities (Grant No. 2021JCCXJD01), Key R&D and transformation projects in Qinghai Province (Grant No. 2021-HZ-808) and Hebei Province (Grant No. 21314401D), and American Chemical Society Petroleum Research Fund (Grant No. PRF-59722-ND10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui-Ping Liu or Lei Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, N., Deng, YR., Wang, SH. et al. Towards superior lithium–sulfur batteries with metal–organic frameworks and their derivatives. Tungsten 4, 269–283 (2022). https://doi.org/10.1007/s42864-022-00186-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00186-x

Keywords

Navigation