Skip to main content
Log in

High yield design of mesoporous tetrakaidecahedron-like α-Fe2O3 nanocrystals with enhanced supercapacitive performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, novel mesoporous tetrakaidecahedron-like α-Fe2O3 nanocrystals have been designed in high yield through a simple hydrothermal method. The growth mechanism of mesoporous tetrakaidecahedron-like α-Fe2O3 nanocrystals was first investigated in detail based on the FESEM images and XRD results of the intermediate products. The electrochemical performance demonstrates that the mesoporous tetrakaidecahedron-like α-Fe2O3 nanocrystal electrode displays enhanced pseudocapacitive properties with a high specific capacitance of 245 F g−1 at 2 A g−1 and good capacitance retention of 83.9% after 2000 continuous charge–discharge cycles, implying that the porous tetrakaidecahedron-like α-Fe2O3 nanocrystals have great potential applications for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and Supplementary information.

References

  1. Holdren JP (2007) Energy and sustainability. Science 315:737–737. https://doi.org/10.1126/science.1139792

    Article  CAS  PubMed  Google Scholar 

  2. Wang TY, Chen SQ, Pang H, Xue HG, Yu Y (2017) MoS2-based nanocomposites for electrochemical energy storage. Adv Sci 4:1600289. https://doi.org/10.1002/advs.201600289

    Article  CAS  Google Scholar 

  3. Huang Y, Zhu MS, Huang Y, Pei ZX, Li HF, Wang ZF, Xue Q, Zhi CY (2016) Multifunctional energy storage and conversion devices. Adv Mater 28:8344–8364. https://doi.org/10.1002/adma.201601928

    Article  CAS  PubMed  Google Scholar 

  4. Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1:1–10. https://doi.org/10.1038/nenergy.2016.70

    Article  CAS  Google Scholar 

  5. Dong LB, Xu CJ, Li Y, Huang ZH, Kang FY, Yang QH, Zhao X (2016) Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A 4:4659–4685. https://doi.org/10.1039/C5TA10582J

    Article  CAS  Google Scholar 

  6. Miller JR, Simon P (2008) Materials science-electrochemical capacitors for energy management. Science 321:651–652. https://doi.org/10.1126/science.1158736

    Article  CAS  PubMed  Google Scholar 

  7. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  8. Vlad A, Balducci A (2017) Supercapacitors: porous materials get energized. Nat Mater 16:161–162. https://doi.org/10.1038/nmat4851

    Article  CAS  PubMed  Google Scholar 

  9. Wang R, Li X, Nie Z, Zhao Y, Wang H (2021) Metal/metal oxide nanoparticles-composited porous carbon for high-performance supercapacitors. J Energy Storage 38:102479. https://doi.org/10.1016/j.est.2021.102479

    Article  Google Scholar 

  10. Wang D, Wang Q, Wang T (2011) Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes. Nanotechnology 22:135604. https://doi.org/10.1088/0957-4484/22/13/135604

    Article  CAS  PubMed  Google Scholar 

  11. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377. https://doi.org/10.1142/9789814317665_0022

    Article  CAS  PubMed  Google Scholar 

  12. Xie KY, Li J, Lai YQ, Lu W, Zhang Z, Liu YX, Zhou LM, Huang HT (2011) Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem Commun Electrochem Commun 13:657–660. https://doi.org/10.1016/j.elecom.2011.03.040

    Article  CAS  Google Scholar 

  13. Ma YL, Sheng HW, Dou W, Su Q, Zhou JY, Xie E, Lan W (2020) Fe2O3 nanoparticles anchored on the Ti3C2Tx MXene paper for flexible supercapacitors with ultrahigh volumetric capacitance. ACS Appl Mater Interfaces. 12:41410–41418. https://doi.org/10.1021/acsami.0c11034

    Article  CAS  PubMed  Google Scholar 

  14. Chen YC, Hsu JH, Lin YG, Hsu YK (2017) Synthesis of Fe2O3 nanorods/silver nanowires on coffee filter as low-cost and efficient electrodes for supercapacitors. J Electroanal Chem 801:65–71. https://doi.org/10.1016/j.jelechem.2017.07.032

    Article  CAS  Google Scholar 

  15. Guo LL, Kou XY, Ding MD, Wang C, Dong LL, Zhang H, Feng CH, Sun YF, Gao Y, Sun P, Lu GY (2017) Reduced graphene oxide/α-Fe2O3 composite nanofibers for application in gas sensors. Sens Actuators B 244:233–242. https://doi.org/10.1016/j.snb.2016.12.137

    Article  CAS  Google Scholar 

  16. Wu XH, Chen YH, Liang KJ, Yu X, Zhuang QQ, Yang Q, Liu SF, Liao S, Li N, Zhang HY (2020) Fe2O3 nanowire arrays on Ni-coated yarns as excellent electrodes for high performance wearable yarn-supercapacitor. J Alloys Compd 866:158156. https://doi.org/10.1016/j.jallcom.2020.158156

    Article  CAS  Google Scholar 

  17. Yang PH, Ding Y, Lin ZY, Chen ZW, Li YZ, Qiang PF, Ebrahimi M, Mai WJ, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736. https://doi.org/10.1021/nl404008e

    Article  CAS  PubMed  Google Scholar 

  18. Quan HY, Cheng BC, Xiao YH, Lei SJ (2016) One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem Eng J 286:165–173. https://doi.org/10.1016/j.cej.2015.10.068

    Article  CAS  Google Scholar 

  19. Wang R, Cai SC, Yan YZ, Yourey WM, Tong W, Tang HL (2017) A novel high-performance electrode architecture for supercapacitors: Fe2O3 nanocubes and carbon nanotubes functionalized carbon. J Mater Chem A 5:22648–22653. https://doi.org/10.1039/C7TA07043H

    Article  CAS  Google Scholar 

  20. Wang HY, Li RY, Li M, Li ZJ (2018) Flower-like Fe2O3@multiple graphene aerogel for high-performance supercapacitors. J Alloys Compd 742:759–768. https://doi.org/10.1016/j.jallcom.2018.01.187

    Article  CAS  Google Scholar 

  21. Zhou X, Dong YM, Xu N, Liu SQ, Chen F (2015) Template-free formation of spindle-like α-Fe2O3 microstructures by hydrothermal reduction. Mater Lett 158:285–289. https://doi.org/10.1016/j.matlet.2015.06.025

    Article  CAS  Google Scholar 

  22. Zhao PH, Wang G, Yu BZ, Li XJ, Bai JT, Ren ZY (2014) Facile hydrothermal fabrication of nitrogen-doped graphene-Fe2O3 composites as high performance electrode materials for supercapacitor. J Alloy Compd 604:87–93. https://doi.org/10.1016/j.jallcom.2014.03.106

    Article  CAS  Google Scholar 

  23. Zhao J, Li Z, Yuan X, Yang Z, Zhang M, Meng A, Li Q (2018) A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays grown on SiC nanowire networks as free-standing advanced electrodes. Adv Energy Mater 8:1702787. https://doi.org/10.1002/aenm.201702787

    Article  CAS  Google Scholar 

  24. Tang Q, Wang W, Wang G (2015) The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. J Mater Chem A 3:6662–6670. https://doi.org/10.1039/C5TA00328H

    Article  CAS  Google Scholar 

  25. Yang XJ, Sun HM, Zhang LS, Zhao LJ, Lian JS, Jiang Q (2016) High efficient photo-fenton catalyst of α-Fe2O3/MoS2 hierarchical nanoheterostructures: reutilization for supercapacitors. Sci Rep 6:31591. https://doi.org/10.1038/srep31591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu XH, Zeng YX, Yu MH, Zhai T, Liang CL, Xie SL, Balogun MS, Tong YX (2014) Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater 26:3148–3155. https://doi.org/10.1002/adma.201305851

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Li Q, Wu HJ, Huang CZ, Lin H, Qin LZ (2015) Aqueous-solution synthesis of uniform PbS nanocubes and their optical properties. J Nanopart Res 17:362. https://doi.org/10.1007/s11051-015-3169-0

    Article  CAS  Google Scholar 

  28. Zhao YB, Pan F, Li H, Niu TC, Xu GQ, Chen W (2013) Facile synthesis of uniform α-Fe2O3 crystals and their facet-dependent catalytic performance in the photo-Fenton reaction. J Mater Chem A 1:7242. https://doi.org/10.1039/C3TA10966F

    Article  CAS  Google Scholar 

  29. Chen JS, Chen X, Li YM, Chen XL, Ramanujan RV, Hu X (2014) Distinct optical and magnetic properties of ionic liquid tuned hematite nanocrystals having different exposed (001) facets. RSC Adv 4:593–597. https://doi.org/10.1039/C3RA43924K

    Article  CAS  Google Scholar 

  30. Frandsen C, Legg BA, Comolli LR, Zhang HZ, Gilbert B, Johnson E, Banfield JF (2014) Aggregation-induced growth and transformation of β-FeOOH nanorods to micron-sized α-Fe2O3 spindles. CrystEngComm 16(2014):1451–1458. https://doi.org/10.1039/c3ce40983j

    Article  CAS  Google Scholar 

  31. Zhang MF, Fan H, Xi BJ, Wang XY, Dong C, Qian YT (2007) Synthesis, characterization, and luminescence properties of uniform Ln3+-doped YF3. J Phys Chem C 111:6652–6657. https://doi.org/10.1021/jp068919d

    Article  CAS  Google Scholar 

  32. Huang F, Zhang HZ, Banfield JF (2003) Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett 3(2003):373–378. https://doi.org/10.1021/nl025836+

    Article  CAS  Google Scholar 

  33. Penn RL (2004) Kinetics of oriented aggregation. J Phys Chem B 108:12707–12712. https://doi.org/10.1021/jp036490+

    Article  CAS  Google Scholar 

  34. Zhang E, Hao GP, Casco ME, Bon V, Grätz S, Borchardt L (2018) Nanocasting in ball mills-combining ultra-hydrophilicity and ordered mesoporosity in carbon materials. J Phys Chem A 6:859–865. https://doi.org/10.1039/c7ta10783h

    Article  CAS  Google Scholar 

  35. Huang JC, Yang SN, Xu Y, Zhou XB, Jiang X, Shi NN, Cao DX, Yin JL, Wang GL (2014) Fe2O3 sheets grown on nickel foam as electrode material for electrochemical capacitors. J Electroanal Chem 713:98–102. https://doi.org/10.1016/j.jelechem.2013.12.009

    Article  CAS  Google Scholar 

  36. Wang Y, Zhang MM, Pan DH, Li Y, Ma TJ, Xie JM (2018) Nitrogen/sulfur co-doped grapheme networks uniformly coupled N-Fe2O3 nanoparticles achieving enhanced supercapacitor. Electrochim Acta 266:242–253. https://doi.org/10.1016/j.electacta.2018.02.040

    Article  CAS  Google Scholar 

  37. Song ZX, Liu W, Wei WS, Quan CZ, Sun NX, Zhou Q, Liu GC, Wen XQ (2016) Preparation and electrochemical properties of Fe2O3/reduced graphene oxide aerogel (Fe2O3/rGOA) composites for supercapacitors. J Alloys Compd 685:355–363. https://doi.org/10.1016/j.jallcom.2016.05.323

    Article  CAS  Google Scholar 

  38. Long CL, Wei T, Yan J, Jiang LL, Fan ZJ (2013) Supercapacitors based on grapheme-supported iron nanosheets as negative electrode materials. ACS Nano 7:11325–11332. https://doi.org/10.1021/nn405192s

    Article  CAS  PubMed  Google Scholar 

  39. Chaudhari NK (2014) Cube-like α-Fe2O3 supported on ordered multimodal porous carbon as high performance electrode material for supercapacitors. Chemsuschem 7:3102–3111. https://doi.org/10.1002/cssc.201402526

    Article  CAS  PubMed  Google Scholar 

  40. Lokhande BJ, Ambare RC, Mane RS, Bharadwaj SR (2013) Concentration-dependent electrochemical supercapacitive performance of Fe2O3. Curr Appl Phys 13:985–989. https://doi.org/10.1016/j.cap.2013.01.047

    Article  Google Scholar 

  41. Nie ZW, Wang YP, Zhang YF, Pan AQ (2016) Multi-shelled α-Fe2O3 microspheres for high-rate supercapacitors. Sci China Mater 59:247–253. https://doi.org/10.1007/s40843-016-5028-8

    Article  CAS  Google Scholar 

  42. Padwal PM, Kadam SL, Mane SM, Kulkarni SB (2016) Enhanced specific capacitance and supercapacitive properties of polyaniline-iron oxide (PANI-Fe2O3) composite electrode material. J Mater Sci 51:10499–10505. https://doi.org/10.1007/s10853-016-0270-4

    Article  CAS  Google Scholar 

  43. Zheng X, Yan XQ, Sun YH, Yu YS, Zhang GJ, Shen YW, Liang QJ, Liao QL, Zhang Y (2016) Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. J Colloid Interface Sci 466:291–296. https://doi.org/10.1016/j.jcis.2015.12.024

    Article  CAS  PubMed  Google Scholar 

  44. Zhu MY, Kan JR, Pan JM, Tong WJ, Chen Q, Wang JC (2019) One-pot hydrothermal fabrication of α-Fe2O3@C nanocomposites for electrochemical energy storage. J Energy Chem 28:1–8. https://doi.org/10.1016/j.jechem.2017.09.021

    Article  Google Scholar 

  45. Dong YD, Xing L, Hu F, Umar A, Wu X (2018) α-Fe2O3/rGO nanospindles as electrode materials for supercapacitors with long cycle life. Mater Res Bull 107:391–396. https://doi.org/10.1016/j.materresbull.2018.07.038

    Article  CAS  Google Scholar 

  46. Shivakumara S, Penki TR, Munichandraiah N (2014) Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. J Solid State Electrochem 18(2014):1057–1066. https://doi.org/10.1007/s10008-013-2355-1

    Article  CAS  Google Scholar 

  47. Shivakumara S, Penki TR, Munichandraiah N (2013) Synthesis and characterization of porous flowerlike α-Fe2O3 nanostructures for supercapacitor application. ECS Electrochem Lett 2:A60–A62. https://doi.org/10.1149/2.002307eel

    Article  CAS  Google Scholar 

  48. Prasanna BP, Avadhani DN, Raghu MS, Yogesh KK (2017) Synthesis of polyaniline/α-Fe2O3 nanocomposite electrode material for supercapacitor applications. Mater Today Commun 12:782–787. https://doi.org/10.1016/j.mtcomm.2017.07.002

    Article  CAS  Google Scholar 

  49. Chaudhari S, Bhattacharjya D, Yu JS (2013) 1-Dimensional porous α-Fe2O3 nanorods as high performance electrode material for supercapacitors. RSC Adv 3:25120–25128. https://doi.org/10.1039/c3ra44159h

    Article  CAS  Google Scholar 

  50. Kore RM, Lokhande BJ (2017) A robust solvent deficient route synthesis of mesoporous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance. J Alloys Compd 725:129–138. https://doi.org/10.1016/j.jallcom.2017.07.145

    Article  CAS  Google Scholar 

  51. Yang Y, Li L, Ruan GD, Fei HL, Xiang CS, Fan XJ, Tour JM (2014) Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors. ACS Nano 8:9622–9628. https://doi.org/10.1021/nn5040197

    Article  CAS  PubMed  Google Scholar 

  52. Zheng C, Cao C, Ali Z, Hou J (2014) Enhanced electrochemical performance of ball milled CoO for supercapacitor applications. J Phys Chem A 2:16467–16473. https://doi.org/10.1039/c4ta02885f

    Article  CAS  Google Scholar 

  53. Yu ZY, Zhang XY, Wei L, Guo X (2019) MOF-derived porous hollow α-Fe2O3 microboxes modified by silver nanoclusters for enhanced pseudocapacitive storage. Appl Surf Sci 463:616–625. https://doi.org/10.1016/j.apsusc.2018.08.262

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202001341), and the Natural Science Foundation of Chongqing (Grant Nos. cstc2019jcyj-msxmX0670 and cstc 2020jcyj-msxmX0103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 376 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Li, Y. High yield design of mesoporous tetrakaidecahedron-like α-Fe2O3 nanocrystals with enhanced supercapacitive performance. Ionics 29, 3237–3248 (2023). https://doi.org/10.1007/s11581-023-05070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05070-3

Keywords

Navigation