Skip to main content

Advertisement

Log in

Freeze-resistant and robust gel electrolyte for flexible aluminum-air batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Flexible aluminum-air batteries have great prospects in wearable devices and various engineering applications. However, it is still a huge challenge for flexible aluminum-air batteries to operate stable under severe cold conditions. The key to solving this problem is to develop freeze-resistant electrolytes with high mechanical performance. Therefore, a novel PVA/BC-EG gel electrolyte for flexible aluminum-air battery was prepared in this study. The crystallization resistance and abundant hydrogen bonds of the PVA/BC-EG electrolytes endow them with freeze-resistant and high mechanical performance. The conductivity and elongation of the electrolytes can reach 21.383 mS/cm and 441.529% even at -20 ℃. The flexible aluminum-air batteries assembled with the PVA/BC-EG electrolytes can still maintain excellent electrochemical characteristics after fatigue-stretching 2000 times under subzero conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The conclusion includes the related data.

References

  1. Jayathilaka WADM, Qi K, Qin Y et al (2019) Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv Mater 31:1–21. https://doi.org/10.1002/adma.201805921

    Article  CAS  Google Scholar 

  2. Zhao S, Zuo Y, Liu T et al (2021) Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions. Adv Energy Mater 11:1–29. https://doi.org/10.1002/aenm.202101749

    Article  CAS  Google Scholar 

  3. Teng HT, Wang WT, Han XF et al (2023) Recent Development and Perspectives of Flexible Zinc-Air Batteries. Wuli Huaxue Xuebao/ Acta Phys Chim Sin 39:1–16. https://doi.org/10.3866/PKU.WHXB202107017

    Article  Google Scholar 

  4. Zhu YH, Yang X, Bao D et al (2018) High-energy-density flexible potassium-ion battery based on patterned electrodes. Joule 2:736–746. https://doi.org/10.1016/j.joule.2018.01.010

    Article  CAS  Google Scholar 

  5. Rahman MdA, Wang X, Wen C (2013) High energy density metal-air batteries: a review. J Electrochem Soc 160:A1759–A1771. https://doi.org/10.1149/2.062310jes

    Article  CAS  Google Scholar 

  6. Wu S, Hu S, Zhang Q et al (2020) Hybrid high-concentration electrolyte significantly strengthens the practicability of alkaline aluminum-air battery. Energy Storage Mater 31:310–317. https://doi.org/10.1016/j.ensm.2020.06.024

    Article  Google Scholar 

  7. Liu Y, Sun Q, Li W et al (2017) A comprehensive review on recent progress in aluminum–air batteries. Green Energy Environ 2:246–277. https://doi.org/10.1016/j.gee.2017.06.006

    Article  Google Scholar 

  8. Shui Z, Liao X, Lei Y et al (2020) MnO2synergized with N/S codoped graphene as a flexible cathode efficient electrocatalyst for advanced honeycomb-shaped stretchable aluminum-air batteries. Langmuir 36:12954–12962. https://doi.org/10.1021/acs.langmuir.0c02246

    Article  CAS  PubMed  Google Scholar 

  9. Ran Q, Zeng SP, Zhu MH et al (2022) Uniformly MXene-Grafted Eutectic Aluminum-Cerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminum-Ion Battery. Adv Funct Mater 2211271:1–10. https://doi.org/10.1002/adfm.202211271

    Article  CAS  Google Scholar 

  10. Wang Y, Kwok HYH, Pan W et al (2019) Combining Al-air battery with paper-making industry, a novel type of flexible primary battery technology. Electrochim Acta 319:947–957. https://doi.org/10.1016/j.electacta.2019.07.049

    Article  CAS  Google Scholar 

  11. Liu S, Ban J, Shi H et al (2022) Near solution-level conductivity of polyvinyl alcohol based electrolyte and the application for fully compliant Al-air battery. Chem Eng J 431(3):134283. https://doi.org/10.1016/j.cej.2021.134283

  12. Jiang Y, Zhang P, Jin H et al (2019) Flexible, nonflammable and Li-dendrite resistant Na2Ti3O7 nanobelt-based separators for advanced Li storage. J Memb Sci 583:190–199. https://doi.org/10.1016/j.memsci.2019.04.032

    Article  CAS  Google Scholar 

  13. Jiang Y, Ding Y, Zhang P et al (2018) Temperature-dependent on/off PVP@TiO2 separator for safe Li-storage. J Memb Sci 565:33–41. https://doi.org/10.1016/j.memsci.2018.08.008

    Article  CAS  Google Scholar 

  14. Deng C, Jiang Y, Fan Z et al (2019) Sepiolite-based separator for advanced Li-ion batteries. Appl Surf Sci 484:446–452. https://doi.org/10.1016/j.apsusc.2019.04.141

    Article  CAS  Google Scholar 

  15. Jiang W, Jiang Y, Zhao S et al (2020) Novel Sepiolite-Based Materials for Lithium- and Sodium-Ion Storage. Energy Technol 8:1901262. https://doi.org/10.1002/ente.201901262

  16. Tang H, Qu Z, Yan Y et al (2022) Unleashing energy storage ability of aqueous battery electrolytes. Mater Futures 1:022001. https://doi.org/10.1088/2752-5724/ac52e8

    Article  Google Scholar 

  17. Jiang Y, Li F, Mei Y et al (2021) Gel polymer electrolyte based on hydrophilic–lipophilic TiO2-modified thermoplastic polyurethane for high-performance Li-ion batteries. J Mater Sci 56:2474–2485. https://doi.org/10.1007/s10853-020-05360-5

    Article  CAS  Google Scholar 

  18. Liu Q, Liu R, He C et al (2022) Advanced polymer-based electrolytes in zinc–air batteries. eScience 2:453–466. https://doi.org/10.1016/j.esci.2022.08.004

    Article  Google Scholar 

  19. Wang S, Song H, Song X et al (2021) An extra-wide temperature all-solid-state lithium-metal battery operating from −73 ℃ to 120 ℃. Energy Storage Mater 39:139–145. https://doi.org/10.1016/j.ensm.2021.04.024

    Article  Google Scholar 

  20. Zuo Y, Yu Y, Zuo C et al (2019) Low-temperature performance of Al-air batteries. Energies (Basel) 12:1–10. https://doi.org/10.3390/en12040612

    Article  CAS  Google Scholar 

  21. Chen L, Li B, Zhu L et al (2021) A PVA/LiCl/PEO interpenetrating composite electrolyte with a three-dimensional dual-network for all-solid-state flexible aluminum-air batteries. RSC Adv 11:39476–39483. https://doi.org/10.1039/d1ra07180g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Z, Zuo C, Liu Z et al (2014) All-solid-state Al-air batteries with polymer alkaline gel electrolyte. J Power Sources 251:470–475. https://doi.org/10.1016/j.jpowsour.2013.11.020

    Article  CAS  Google Scholar 

  23. Wang X, Wang S, Yong Z et al (2022) All-in-One flexible supercapacitor based on hydrogen bonds cross-linked organic gel electrolyte with anti-freezing and anti-pressure properties. J Alloys Compd 902:163658. https://doi.org/10.1016/j.jallcom.2022.163658

    Article  CAS  Google Scholar 

  24. Zhang XF, Ma X, Hou T et al (2019) Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew Chem Int Ed 58:7366–7370. https://doi.org/10.1002/anie.201902578

    Article  CAS  Google Scholar 

  25. Chen M, Zhou W, Wang A et al (2020) Anti-freezing flexible aqueous Zn-MnO2 batteries working at -35 °c enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J Mater Chem A Mater 8:6828–6841. https://doi.org/10.1039/d0ta01553a

    Article  CAS  Google Scholar 

  26. Zhang P, Wang K, Zuo Y et al (2023) A self-designed double cross-linked gel for flexible zinc-air battery with extreme conditions adaptability. Chem Eng J 451(1):138622. https://doi.org/10.1016/j.cej.2022.138622

  27. Li Y, Chengxin Hu, Lan J et al (2020) Hydrogel-based temperature sensor with water retention, frost resistance and remoldability. Polymer (Guildf) 186:122027. https://doi.org/10.1016/j.polymer.2019.122027

    Article  CAS  Google Scholar 

  28. Wang H, Liu J, Wang J et al (2019) Concentrated hydrogel electrolyte-enabled aqueous rechargeable NiCo//Zn battery working from -20 to 50 °C. ACS Appl Mater Interfaces 11:49–55. https://doi.org/10.1021/acsami.8b18003

    Article  CAS  PubMed  Google Scholar 

  29. Quan Y, Chen M, Zhou W et al (2020) High-performance anti-freezing flexible Zn-MnO2 battery based on polyacrylamide/graphene oxide/ethylene glycol gel electrolyte. Front Chem 8:603. https://doi.org/10.3389/fchem.2020.00603

  30. Li S, Pan H, Wang Y, Sun J (2020) Polyelectrolyte complex-based self-healing, fatigue-resistant and anti-freezing hydrogels as highly sensitive ionic skins. J Mater Chem A Mater 8:3667–3675. https://doi.org/10.1039/c9ta13213a

    Article  CAS  Google Scholar 

  31. Niu C, Zhang H, Yang B, Sun H (2021) A tough, anti-freezing and conductive nanocomposite interpenetrated organohydrogel mediated by hydrogen bonding. New J Chem 45:14392–14400. https://doi.org/10.1039/d1nj01774h

    Article  CAS  Google Scholar 

  32. Rong Q, Lei W, Huang J, Liu M (2018) Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv Energy Mater 8:1–7. https://doi.org/10.1002/aenm.201801967

    Article  CAS  Google Scholar 

  33. Tang CM, Tian YH, Hsu SH (2015) Poly(vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: Mineralization behavior and characterization. Materials 8:4895–4911. https://doi.org/10.3390/ma8084895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stanescu PO, Radu IC, Leu Alexa R et al (2021) Novel chitosan and bacterial cellulose biocomposites tailored with polymeric nanoparticles for modern wound dressing development. Drug Deliv 28:1932–1950. https://doi.org/10.1080/10717544.2021.1977423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun W, Yang J, Ji X et al (2022) Antifreezing zwitterionic hydrogel electrolyte with high conductivity at subzero temperature for flexible sensor and supercapacitor. Sustain Mater Technol 32:e00437. https://doi.org/10.1016/j.susmat.2022.e00437

    Article  CAS  Google Scholar 

  36. Obermeier E, Fischer S, Bohne D (1985) Thermal Conductivity, Density, Viscosity, and Prandtl- Numbers of Di- and Triethylene Glycol-Water Mixtures. Ber Bunsenges/Phys Chem Chem Phys 89:805–809. https://doi.org/10.1002/bbpc.19850890716

    Article  CAS  Google Scholar 

  37. Kumar RM, Baskar P, Balamurugan K et al (2012) On the perturbation of the H-Bonding Interaction in ethylene glycol clusters upon hydration. J Phys Chem A 116:4239–4247. https://doi.org/10.1021/jp300693r

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by Zhejiang Provincial Natural Science Foundation (Project No. LGG21E050021), and the Sci-Tech Planning Project of Jiaxing (Project No.2020AY10015, 2020AD10015 and 2021AY30020).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Y.Y. and Y.Z.; methodology, Y.Y. and C.Z.; formal analysis, Y.Y. and Y.Z.; investigation, Y.Y. and Z.Z.; writing-original draft preparation, H.Z.; writing-review and editing Y.Y.; visualization, H.Z. and D.L.; supervision, Y.Y. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ying Yu or Yuxin Zuo.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yu, Y., Zuo, Y. et al. Freeze-resistant and robust gel electrolyte for flexible aluminum-air batteries. Ionics 29, 3087–3096 (2023). https://doi.org/10.1007/s11581-023-05066-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05066-z

Keywords

Navigation