Skip to main content
Log in

An anti-freezing and anti-drying multifunctional gel electrolyte for flexible aqueous zinc-ion batteries

基于耐低温、 保湿多功能凝胶电解质的柔性水系锌离子电池

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Aqueous zinc-ion batteries (ZIBs) have attracted immense attention for flexible energy storage devices due to their high safety and low cost. However, conventional flexible aqueous ZIBs will undergo severe capacity loss at subzero temperature due to the inevitably freeze of electrolytes. In addition, under large bending or stretching strains, the encapsulation of devices would be damaged, which causes the evaporation of water in electrolytes and results in device failure. Herein, an anti-freezing and anti-drying gel electrolyte based on polyacrylamide (PAM) and glycerol (Gly) is developed. The strong hydrogen-bonding interactions between PAM or Gly and water molecules not only avoid the crystallization of the gel electrolyte at low temperatures, but also constrain the free water and restrict its evaporation. Therefore, such gel electrolyte displays a high ionic conductivity of 9.65 × 10−5 S cm−1 at −40°C. Furthermore, it can restrict the dehydration process when the electrolyte is exposed to ambient environment. The flexible ZIBs based on such gel electrolyte exhibit excellent electrochemical performance at −40°C and the devices without encapsulation retain 98% of their initial capacity in ambient condition after 30 days. This work provides a route to design anti-freezing and anti-drying gel electrolytes for aqueous energy storage devices.

摘要

水系锌离子电池由于具有安全性高、 成本低的特点, 在柔性储能领域得到广泛关注. 然而, 传统柔性水系锌离子电池处于零下温度时, 由于其电解质的凝固, 电池容量会发生严重衰减. 此外, 当电池承受大幅度的形变后, 其外包装易发生破损, 造成电解质中水分的挥发, 最终导致器件失效. 在本文中, 我们开发了一种基于聚丙烯酰胺(PAM)和甘油(Gly)的耐低温、 保湿凝胶电解质. PAM和Gly与水分子之间的强氢键作用不仅抑制了凝胶电解质在低温时的凝固, 而且限制了电解质中自由水的挥发. 基于该电解质的柔性水系锌离子电池在−40°C时仍具有优良的电化学性能, 并且无封装的电池在30天后仍保持了初始容量的98%. 该工作提供了一种设计水系储能器件用耐低温、 保湿凝胶电解质的新思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhong C, Deng Y, Hu W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev, 2015, 44: 7484–7539

    Article  CAS  Google Scholar 

  2. Huang S, Zhu J, Tian J, et al. Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem Eur J, 2019, 25: 14480–14494

    Article  CAS  Google Scholar 

  3. Wang Z, Li H, Tang Z, et al. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv Funct Mater, 2018, 28: 1804560

    Article  CAS  Google Scholar 

  4. Cheng XB, Zhang R, Zhao CZ, et al. A review of solid electrolyte interphases on lithium metal anode. Adv Sci, 2016, 3: 1500213

    Article  CAS  Google Scholar 

  5. Xiao Y, Wang Y, Bo SH, et al. Understanding interface stability in solid-state batteries. Nat Rev Mater, 2019, 5: 105–126

    Article  CAS  Google Scholar 

  6. Chuai M, Yang J, Wang M, et al. High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience, 2021, doi: https://doi.org/10.1016/j.esci.2021.11.002

  7. Wan F, Wang X, Bi S, et al. Freestanding reduced graphene oxide/sodium vanadate composite films for flexible aqueous zinc-ion batteries. Sci China Chem, 2019, 62: 609–615

    Article  CAS  Google Scholar 

  8. Huang J, Zhou J, Liang S. Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes. Acta Phys-Chim Sin, 2021, 37: 2005020

    Google Scholar 

  9. Li P, Kim H, Ming J, et al. Quasi-compensatory effect in emerging anode-free lithium batteries. eScience, 2021, 1: 3–12

    Article  Google Scholar 

  10. Su L, Liu L, Wang Y, et al. Synergetic ternary metal oxide nanodotsgraphene cathode for high performance zinc energy storage. Chin Chem Lett, 2020, 31: 2358–2364

    Article  CAS  Google Scholar 

  11. Zhao M, Li XY, Chen X, et al. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries. eScience, 2021, 1: 44–52

    Article  Google Scholar 

  12. Zhao Y, Zhu Y, Zhang X. Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. InfoMat, 2020, 2: 237–260

    Article  CAS  Google Scholar 

  13. Zhang M, Liang R, Or T, et al. Recent progress on high-performance cathode materials for zinc-ion batteries. Small Struct, 2021, 2: 2000064

    Article  CAS  Google Scholar 

  14. Fan X, Liu B, Liu J, et al. Battery technologies for grid-level large-scale electrical energy storage. Trans Tianjin Univ, 2020, 26: 92–103

    Article  Google Scholar 

  15. Zhu YF, Xiao Y, Dou SX, et al. Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries. eScience, 2021, 1: 13–27

    Article  Google Scholar 

  16. Ngai KS, Ramesh S, Ramesh K, et al. A review of polymer electrolytes: Fundamental, approaches and applications. Ionics, 2016, 22: 1259–1279

    Article  CAS  Google Scholar 

  17. Liu Z, Liang G, Zhan Y, et al. A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy, 2019, 58: 732–742

    Article  CAS  Google Scholar 

  18. Niu Z, Zhou W, Chen X, et al. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv Mater, 2015, 27: 6002–6008

    Article  CAS  Google Scholar 

  19. Li H, Lv T, Sun H, et al. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte. Nat Commun, 2019, 10: 536

    Article  CAS  Google Scholar 

  20. Dong C, Xu F, Chen L, et al. Design strategies for high-voltage aqueous batteries. Small Struct, 2021, 2: 2100001

    Article  CAS  Google Scholar 

  21. Wei J, Wei G, Shang Y, et al. Dissolution-crystallization transition within a polymer hydrogel for a processable ultratough electrolyte. Adv Mater, 2019, 31: 1900248

    Article  CAS  Google Scholar 

  22. Zhou D, Chen F, Handschuh-Wang S, et al. Biomimetic extreme-temperature- and environment-adaptable hydrogels. ChemPhysChem, 2019, 20: 2139–2154

    Article  CAS  Google Scholar 

  23. Wang Z, Cheng J, Zhou J, et al. All-climate aqueous fiber-shaped supercapacitors with record areal energy density and high safety. Nano Energy, 2018, 50: 106–117

    Article  CAS  Google Scholar 

  24. Huang S, Wan F, Bi S, et al. A self-healing integrated all-in-one zinc-ion battery. Angew Chem Int Ed, 2019, 58: 4313–4317

    Article  CAS  Google Scholar 

  25. Huang Y, Zhu M, Huang Y, et al. Multifunctional energy storage and conversion devices. Adv Mater, 2016, 28: 8344–8364

    Article  CAS  Google Scholar 

  26. Wan F, Zhu J, Huang S, et al. High-voltage electrolytes for aqueous energy storage devices. Batteries Supercaps, 2020, 3: 323–330

    Article  CAS  Google Scholar 

  27. Liu J, Xie C, Kretzschmann A, et al. Metallopolymer organohydrogels with photo-controlled coordination crosslinks work properly below 0°C. Adv Mater, 2020, 32: 1908324

    Article  CAS  Google Scholar 

  28. Ju M, Wu B, Sun S, et al. Redox-active iron-citrate complex regulated robust coating-free hydrogel microfiber net with high environmental tolerance and sensitivity. Adv Funct Mater, 2020, 30: 1910387

    Article  CAS  Google Scholar 

  29. Chen M, Zhou W, Wang A, et al. Anti-freezing flexible aqueous Zn-MnO2 batteries working at −35°C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J Mater Chem A, 2020, 8: 6828–6841

    Article  CAS  Google Scholar 

  30. Li H, Zhang H, Diemant T, et al. Reversible copper sulfide conversion in nonflammable trimethyl phosphate electrolytes for safe sodium-ion batteries. Small Struct, 2021, 2: 2100035

    Article  CAS  Google Scholar 

  31. Peng S, Jiang X, Xiang X, et al. High-performance and flexible solidstate supercapacitors based on high toughness and thermoplastic poly(vinyl alcohol)/NaCl/glycerol supramolecular gel polymer electrolyte. Electrochim Acta, 2019, 324: 134874

    Article  CAS  Google Scholar 

  32. Chen F, Zhou D, Wang J, et al. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew Chem Int Ed, 2018, 57: 6568–6571

    Article  CAS  Google Scholar 

  33. Ji X. A perspective of ZnCl2 electrolytes: The physical and electrochemical properties. eScience, 2021, doi: https://doi.org/10.1016/j.esci.2021.10.004

  34. Hou J, Yang M, Wang D, et al. Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60°C. Adv Energy Mater, 2020, 10: 1904152

    Article  CAS  Google Scholar 

  35. Jin X, Song L, Yang H, et al. Stretchable supercapacitor at −30°C. Energy Environ Sci, 2021, 14: 3075–3085

    Article  CAS  Google Scholar 

  36. Peng M, Wang L, Li L, et al. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. eScience, 2021, 1: 83–90

    Article  Google Scholar 

  37. Liu L, Dou Q, Sun Y, et al. A moisture absorbing gel electrolyte enables aqueous and flexible supercapacitors operating at high temperatures. J Mater Chem A, 2019, 7: 20398–20404

    Article  CAS  Google Scholar 

  38. Sun Y, Ma H, Zhang X, et al. Salty ice electrolyte with superior ionic conductivity towards low-temperature aqueous zinc ion hybrid capacitors. Adv Funct Mater, 2021, 31: 2101277

    Article  CAS  Google Scholar 

  39. Mo F, Liang G, Meng Q, et al. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20°C. Energy Environ Sci, 2019, 12: 706–715

    Article  CAS  Google Scholar 

  40. Ma L, Zhao Y, Ji X, et al. A usage scenario independent “air chargeable” flexible zinc ion energy storage device. Adv Energy Mater, 2019, 9: 1900509

    Article  Google Scholar 

  41. Ma L, Chen S, Wang D, et al. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv Energy Mater, 2019, 9: 1803046

    Article  CAS  Google Scholar 

  42. Lou Z, Shen G. Flexible image sensors with semiconducting nanowires for biomimic visual applications. Small Struct, 2021, 2: 2000152

    Article  CAS  Google Scholar 

  43. Han L, Liu K, Wang M, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Funct Mater, 2018, 28: 1704195

    Article  CAS  Google Scholar 

  44. Liu T, Liu M, Dou S, et al. Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano, 2018, 12: 2818–2826

    Article  CAS  Google Scholar 

  45. Yuk H, Zhang T, Parada GA, et al. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat Commun, 2016, 7: 12028

    Article  CAS  Google Scholar 

  46. Yang J, Gao L, Liu M, et al. Advanced biotechnology for cell cryopreservation. Trans Tianjin Univ, 2020, 26: 409–423

    Article  Google Scholar 

  47. Wang R, Yao M, Huang S, et al. Sustainable dough-based gel electrolytes for aqueous energy storage devices. Adv Funct Mater, 2021, 31: 2009209

    Article  CAS  Google Scholar 

  48. Liu A, Kovacik P, Peard N, et al. Monolithic flexible supercapacitors integrated into single sheets of paper and membrane via vapor printing. Adv Mater, 2017, 29: 1606091

    Article  CAS  Google Scholar 

  49. Li X, Liu L, Wang X, et al. Flexible and self-healing aqueous supercapacitors for low temperature applications: Polyampholyte gel electrolytes with biochar electrodes. Sci Rep, 2017, 7: 1685

    Article  CAS  Google Scholar 

  50. Tao F, Qin L, Wang Z, et al. Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte. ACS Appl Mater Interfaces, 2017, 9: 15541–15548

    Article  CAS  Google Scholar 

  51. Jian Y, Handschuh-Wang S, Zhang J, et al. Biomimetic anti-freezing polymeric hydrogels: Keeping soft-wet materials active in cold environments. Mater Horiz, 2020, 8: 351–369

    Article  Google Scholar 

  52. Liu X, Taiwo OO, Yin C, et al. Aligned ionogel electrolytes for high-temperature supercapacitors. Adv Sci, 2019, 6: 1801337

    Article  CAS  Google Scholar 

  53. Evanko B, Boettcher SW, Yoo SJ, et al. Redox-enhanced electrochemical capacitors: Status, opportunity, and best practices for performance evaluation. ACS Energy Lett, 2017, 2: 2581–2590

    Article  CAS  Google Scholar 

  54. Guo Y, Bae J, Fang Z, et al. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem Rev, 2020, 120: 7642–7707

    Article  CAS  Google Scholar 

  55. Vieira MGA, da Silva MA, dos Santos LO, et al. Natural-based plasticizers and biopolymer films: A review. Eur Polym J, 2011, 47: 254–263

    Article  CAS  Google Scholar 

  56. Zhang Z, Xiao F, Xiao J, et al. Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. J Mater Chem A, 2015, 3: 11817–11823

    Article  CAS  Google Scholar 

  57. Liu L, Niu Z, Chen J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem Soc Rev, 2016, 45: 4340–4363

    Article  CAS  Google Scholar 

  58. Liu W, Yan X, Chen J, et al. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale, 2013, 5: 6053–6062

    Article  CAS  Google Scholar 

  59. Li X, Lou D, Wang H, et al. Flexible supercapacitor based on organohydrogel electrolyte with long-term anti-freezing and anti-drying property. Adv Funct Mater, 2020, 30: 2007291

    Article  CAS  Google Scholar 

  60. Huang L, Li C, Shi G. High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. J Mater Chem A, 2014, 2: 968–974

    Article  CAS  Google Scholar 

  61. Zhou Q, Li Y, Huang L, et al. Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors. J Mater Chem A, 2014, 2: 17489–17494

    Article  CAS  Google Scholar 

  62. Kurra N, Jiang Q, Nayak P, et al. Laser-derived graphene: A three-dimensional printed graphene electrode and its emerging applications. Nano Today, 2019, 24: 81–102

    Article  CAS  Google Scholar 

  63. Wang X, Lu Q, Chen C, et al. A consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates. ACS Appl Mater Interfaces, 2017, 9: 28612–28619

    Article  CAS  Google Scholar 

  64. Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett, 2010, 10: 4863–4868

    Article  CAS  Google Scholar 

  65. Zhong J, Meng J, Yang Z, et al. Shape memory fiber supercapacitors. Nano Energy, 2015, 17: 330–338

    Article  CAS  Google Scholar 

  66. Hu X, Fan L, Qin G, et al. Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor. J Power Sources, 2019, 414: 201–209

    Article  CAS  Google Scholar 

  67. Fan E, Li L, Wang Z, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects. Chem Rev, 2020, 120: 7020–7063

    Article  CAS  Google Scholar 

  68. Wang Y, Song Y, Xia Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem Soc Rev, 2016, 45: 5925–5950

    Article  CAS  Google Scholar 

  69. Shao Y, El-Kady MF, Sun J, et al. Design and mechanisms of asymmetric supercapacitors. Chem Rev, 2018, 118: 9233–9280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin (18JCJQJC46300 and 19JCZDJC31900), the National Natural Science Foundation of China (51822205 and 21875121), the Ministry of Science and Technology of China (2019YFA0705600 and 2017YFA0206701), the Ministry of Education of China (B12015), and the “Frontiers Science Center for New Organic Matter”, Nankai University (63181206). The authors thank Professor Zhou Z (Nankai University) for supporting Materials Studio calculations.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wang R performed the experiments and wrote the original manuscript; Yao M contributed to the electrochemical measurements and revised the manuscript; Huang S and Tian J contributed to the synthesis of electrolytes; Niu Z proposed the concept, supervised the experiments and revised the manuscript. All authors contributed to the general discussion.

Corresponding author

Correspondence to Zhiqiang Niu  (牛志强).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Rui Wang received his BS degree in chemistry from Nankai University in 2018. He then joined the Key Laboratory of Advanced Energy Materials Chemistry at Nankai University under the supervision of Prof. Zhiqiang Niu. His research focuses on the design of smart electrolytes for energy storage devices.

Zhiqiang Niu is a professor at the College of Chemistry, Nankai University. He received his PhD degree from the Institute of Physics, Chinese Academy of Sciences in 2010. After his postdoctoral research at the School of Materials Science and Engineering, Nanyang Technological University (Singapore), he started his independent research career at Nankai University in 2014. His research interests focus on the unconventional energy storage devices from electrode materials to device configurations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Yao, M., Huang, S. et al. An anti-freezing and anti-drying multifunctional gel electrolyte for flexible aqueous zinc-ion batteries. Sci. China Mater. 65, 2189–2196 (2022). https://doi.org/10.1007/s40843-021-1924-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1924-2

Keywords

Navigation