Skip to main content

Advertisement

Log in

Gel polymer electrolyte based on hydrophilic–lipophilic TiO2-modified thermoplastic polyurethane for high-performance Li-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Due to the advantages of high energy density and improved safety properties, Li metal batteries with gel polymer electrolyte (GPE) have drawn much attention in recent years. Herein, a novel gel thermoplastic polyurethane (TPU) electrolyte filled with ultrafine hydrophilic–lipophilic TiO2 nanoparticles was successfully prepared by using a phase separation technology. The gel electrolyte can protect the battery against the leakage of liquid electrolyte by means of its strong interaction with Li+ and solvents. This kind of GPE shows an ionic conductivity of 1.59 mS cm−1 and an electrochemical window of 4.3 V (vs. Li/Li+) at room temperature. Robust TiO2 nanoparticles embedded into TPU matrix can effectively block dendrite puncture and, besides, greatly improve the thermal stability of GPE. The cycling performance, rate capability and mechanical properties guarantee the reliability of the as-prepared GPE in Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. Chen H, Zhang W, Tang X-Q, Ding Y-H, Yin J-R, Jiang Y, Zhang P, Jin H (2018) First principles study of P-doped borophene as anode materials for lithium ion batteries. Appl Surf Sci 427:198–205. https://doi.org/10.1016/j.apsusc.2017.08.178

    Article  CAS  Google Scholar 

  2. Guo L-F, Zhang S-Y, Xie J, Zhen D, Jin Y, Wan K-Y, Zhuang D-G, Zheng W-Q, Zhao X-B (2020) Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries. Int J Miner Metall Mater 27:515–525. https://doi.org/10.1007/s12613-019-1900-z

    Article  CAS  Google Scholar 

  3. Setiawan H, Petrus HTBM, Perdana I (2019) Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid. Int J Miner Metall Mater 26:98–107. https://doi.org/10.1007/s12613-019-1713-0

    Article  CAS  Google Scholar 

  4. Li Y, Cheng L-N, Miao W-K, Wang C-X, Kuang D-Z, Han S-M (2020) Nd–Mg–Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics. Int J Miner Metall Mater 27:391–400. https://doi.org/10.1007/s12613-019-1880-z

    Article  CAS  Google Scholar 

  5. Tang W, Zhu Y, Hou Y, Liu L, Wu Y, Loh KP, Zhang H, Zhu K (2013) Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy Environ Sci 6:2093–2104. https://doi.org/10.1039/C3EE24249H

    Article  CAS  Google Scholar 

  6. Sun J, Lu C, Tian Q, Mei Y, Peng J, Ding Y (2020) V2O3/MoS2 microspheres as a high-performance anode for Li-storage. Appl Surf Sci 513:145756. https://doi.org/10.1016/j.apsusc.2020.145756

    Article  CAS  Google Scholar 

  7. Jiang W, Liu Q, Peng J, Jiang Y, Ding Y, Wei Q (2020) Co9S8 nanoparticles embedded into amorphous carbon as anode materials for lithium-ion batteries. Nanotechnology 31:235713. https://doi.org/10.1088/1361-6528/ab7887

    Article  CAS  Google Scholar 

  8. Zhang W, Yin J, Zhang P, Tang X, Ding Y (2018) Two-dimensional phosphorus carbide as a promising anode material for lithium-ion batteries. J Mater Chem A 6:12029–12037. https://doi.org/10.1039/C8TA02995D

    Article  CAS  Google Scholar 

  9. Zhu J, Wierzbicki T, Li W (2018) A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J Power Sources 378:153–168. https://doi.org/10.1016/j.jpowsour.2017.12.034

    Article  CAS  Google Scholar 

  10. Jiang Y, Zhang P, Jin H, Liu X, Ding Y (2019) Flexible, nonflammable and Li-dendrite resistant Na2Ti3O7 nanobelt-based separators for advanced Li storage. J Membr Sci 583:190–199. https://doi.org/10.1016/j.memsci.2019.04.032

    Article  CAS  Google Scholar 

  11. Deng C, Jiang Y, Fan Z, Zhao S, Ouyang D, Tan J, Zhang P, Ding Y (2019) Sepiolite-based separator for advanced Li-ion batteries. Appl Surf Sci 484:446–452. https://doi.org/10.1016/j.apsusc.2019.04.141

    Article  CAS  Google Scholar 

  12. Cheng X, Pan J, Zhao Y, Liao M, Peng H (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8:1702184. https://doi.org/10.1002/aenm.201702184

    Article  CAS  Google Scholar 

  13. Kuo P-L, Tsao C-H, Hsu C-H, Chen S-T, Hsu H-M (2016) A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries. J Membr Sci 499:462–469. https://doi.org/10.1016/j.memsci.2015.11.007

    Article  CAS  Google Scholar 

  14. Kalyana Sundaram NT, Vasudevan T, Subramania A (2007) Synthesis of ZrO2 nanoparticles in microwave hydrolysis of Zr (IV) salt solutions—Ionic conductivity of PVdF-co-HFP-based polymer electrolyte by the inclusion of ZrO2 nanoparticles. J Phys Chem Solids 68:264–271. https://doi.org/10.1016/j.jpcs.2006.11.005

    Article  CAS  Google Scholar 

  15. Xiang H, Chen J, Li Z, Wang H (2011) An inorganic membrane as a separator for lithium-ion battery. J Power Sources 196:8651–8655. https://doi.org/10.1016/j.jpowsour.2011.06.055

    Article  CAS  Google Scholar 

  16. Liu Q, Jiang W, Lu W, Mei Y, He F, Zhang M, Liu Y, Chen Y, Peng J, Ding Y (2020) Anisotropic semi-aligned PAN@PVdF-HFP separator for Li-ion batteries. Nanotechnology 31:435701. https://doi.org/10.1088/1361-6528/aba303

    Article  CAS  Google Scholar 

  17. Jiang Y, Ding Y, Zhang P, Li F, Yang Z (2018) Temperature-dependent on/off PVP@TiO2 separator for safe Li-storage. J Membr Sci 565:33–41. https://doi.org/10.1016/j.memsci.2018.08.008

    Article  CAS  Google Scholar 

  18. Yin J, Wu B, Wang Y, Li Z, Yao Y, Jiang Y, Ding Y, Xu F, Zhang P (2018) Novel elastic, lattice dynamics and thermodynamic properties of metallic single-layer transition metal phosphides: 2H–M2P (Mo2P, W2P, Nb2P and Ta2P). J Phys: Condens Matter 30:135701

    Google Scholar 

  19. Kumar R, Subramania A, Sundaram NTK, Kumar GV, Baskaran I (2007) Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte. J Membr Sci 300:104–110. https://doi.org/10.1016/j.memsci.2007.05.014

    Article  CAS  Google Scholar 

  20. Priya ARS, Subramania A, Jung Y-S, Kim K-J (2008) High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF–HFP membrane electrolyte. Langmuir 24:9816–9819. https://doi.org/10.1021/la801375s

    Article  CAS  Google Scholar 

  21. Subramania A, Kalyana Sundaram NT, Sathiya Priya AR, Vijaya Kumar G (2007) Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. J Membr Sci 294:8–15. https://doi.org/10.1016/j.memsci.2007.01.025

    Article  CAS  Google Scholar 

  22. Sundaram NTK, Musthafa OTM, Lokesh KS, Subramania A (2008) Effect of porosity on PVdF-co-HFP–PMMA-based electrolyte. Mater Chem Phys 110:11–16. https://doi.org/10.1016/j.matchemphys.2007.12.024

    Article  CAS  Google Scholar 

  23. Jin H, Ding Y-H, Wang M, Song Y, Liao Z, Newcomb CJ, Wu X, Tang X-Q, Li Z, Lin Y, Yan F, Jian T, Mu P, Chen C-L (2018) Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids. Nature Communications 9:270. https://doi.org/10.1038/s41467-017-02059-1

    Article  CAS  Google Scholar 

  24. Yarmolenko OV, Yudina AV, Khatmullina KG (2018) Nanocomposite polymer electrolytes for the lithium power sources (a Review). Russ J Electrochem 54:325–343. https://doi.org/10.1134/S1023193518040092

    Article  CAS  Google Scholar 

  25. Lu Q, Yang J, Lu W, Wang J, Nuli Y (2015) Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries. Electrochim Acta 152:489–495. https://doi.org/10.1016/j.electacta.2014.11.176

    Article  CAS  Google Scholar 

  26. Li H, Li M, Siyal SH, Zhu M, Lan J-L, Sui G, Yu Y, Zhong W, Yang X (2018) A sandwich structure polymer/polymer-ceramics/polymer gel electrolytes for the safe, stable cycling of lithium metal batteries. J Membr Sci 555:169–176. https://doi.org/10.1016/j.memsci.2018.03.038

    Article  CAS  Google Scholar 

  27. Zhu M, Wu J, Zhong W-H, Lan J, Sui G, Yang X (2018) A biobased composite gel polymer electrolyte with functions of lithium dendrites suppressing and manganese ions trapping. Adv Energy Mater 8:1702561. https://doi.org/10.1002/aenm.201702561

    Article  CAS  Google Scholar 

  28. Zhang Y, Zhao Y, Cheng X, Weng W, Ren J, Fang X, Jiang Y, Chen P, Zhang Z, Wang Y, Peng H (2015) Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew Chem Int Ed 54:11177–11182. https://doi.org/10.1002/anie.201506142

    Article  CAS  Google Scholar 

  29. Takeda Y, Yamamoto O, Imanishi N (2016) Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes. Electrochemistry 84:210–218. https://doi.org/10.5796/electrochemistry.84.210

    Article  CAS  Google Scholar 

  30. Lu Q, He Y-B, Yu Q, Li B, Kaneti YV, Yao Y, Kang F, Yang Q-H (2017) Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater 29:1604460. https://doi.org/10.1002/adma.201604460

    Article  CAS  Google Scholar 

  31. Wu H, Cao Y, Su H, Wang C (2018) Tough gel electrolyte using double polymer network design for the safe, stable cycling of lithium metal anode. Angew Chem Int Ed 57:1361–1365. https://doi.org/10.1002/anie.201709774

    Article  CAS  Google Scholar 

  32. Wang Y, Liu B, Li Q, Cartmell S, Ferrara S, Deng ZD, Xiao J (2015) Lithium and lithium ion batteries for applications in microelectronic devices: a review. J Power Sources 286:330–345. https://doi.org/10.1016/j.jpowsour.2015.03.164

    Article  CAS  Google Scholar 

  33. Liang S, Yan W, Wu X, Zhang Y, Zhu Y, Wang H, Wu Y (2018) Gel polymer electrolytes for lithium ion batteries: fabrication, characterization and performance. Solid State Ion 318:2–18. https://doi.org/10.1016/j.ssi.2017.12.023

    Article  CAS  Google Scholar 

  34. Yang D, He L, Liu Y, Yan W, Liang S, Zhu Y, Fu L, Chen Y, Wu Y (2019) An acetylene black modified gel polymer electrolyte for high-performance lithium–sulfur batteries. J Mater Chem A 7:13679–13686. https://doi.org/10.1039/C9TA03123E

    Article  CAS  Google Scholar 

  35. Zhu Y, Xiao S, Shi Y, Yang Y, Wu Y (2013) A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. J Mater Chem A 1:7790–7797. https://doi.org/10.1039/C3TA00167A

    Article  CAS  Google Scholar 

  36. Liang S, Shi Y, Ma T, Yan W, Qin S, Wang Y, Zhu Y, Wang H, Wu Y (2019) A compact gel membrane based on a blend of PEO and PVDF for dendrite-free lithium metal anodes. ChemElectroChem 6:5413–5419. https://doi.org/10.1002/celc.201901351

    Article  CAS  Google Scholar 

  37. Chen W-C, Chen H-H, Wen T-C, Digar M, Gopalan A (2004) Morphology and ionic conductivity of thermoplastic polyurethane electrolytes. J Appl Polym Sci 91:1154–1167. https://doi.org/10.1002/app.13208

    Article  CAS  Google Scholar 

  38. Tian L-y, Zhu W-h, Tang X (2003) Polymer gel electrolytes based on thermoplastic polyurethane. J Appl Polym Sci 90:2310–2315. https://doi.org/10.1002/app.12732

    Article  CAS  Google Scholar 

  39. Liu X, Song K, Lu C, Huang Y, Duan X, Li S, Ding Y (2018) Electrospun PU@GO separators for advanced lithium ion batteries. J Membr Sci 555:1–6. https://doi.org/10.1016/j.memsci.2018.03.027

    Article  CAS  Google Scholar 

  40. Song K, Zhang P, Huang Y, Xu F, Ding Y (2019) Electrospun PU/PVP/GO separator for Li-ion batteries. Fibers Polym 20:961–965. https://doi.org/10.1007/s12221-019-8883-2

    Article  CAS  Google Scholar 

  41. Wu N, Jing B, Cao Q, Wang X, Kuang H, Wang Q (2012) A novel electrospun TPU/PVdF porous fibrous polymer electrolyte for lithium ion batteries. J Appl Polym Sci 125:2556–2563. https://doi.org/10.1002/app.36523

    Article  CAS  Google Scholar 

  42. Kim BG, Kim J-S, Min J, Lee Y-H, Choi JH, Jang MC, Freunberger SA, Choi JW (2016) A moisture- and oxygen-impermeable separator for aprotic Li–O2 batteries. Adv Funct Mater 26:1747–1756. https://doi.org/10.1002/adfm.201504437

    Article  CAS  Google Scholar 

  43. Zhou L, Cao Q, Jing B, Wang X, Tang X, Wu N (2014) Study of a novel porous gel polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) by electrospinning technique. J Power Sources 263:118–124. https://doi.org/10.1016/j.jpowsour.2014.03.140

    Article  CAS  Google Scholar 

  44. Karthick SN, Prabakar K, Subramania A, Hong J-T, Jang J-J, Kim H-J (2011) Formation of anatase TiO2 nanoparticles by simple polymer gel technique and their properties. Powder Technol 205:36–41. https://doi.org/10.1016/j.powtec.2010.08.061

    Article  CAS  Google Scholar 

  45. Maurya DK, Murugadoss V, Angaiah S (2019) All-solid-state electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/Li7.1La3Ba0.05Zr1.95O12 nanohybrid membrane electrolyte for high-energy Li-ion capacitors. J Phys Chem C 123:30145–30154. https://doi.org/10.1021/acs.jpcc.9b09264

    Article  CAS  Google Scholar 

  46. Solarajan AK, Murugadoss V, Angaiah S (2017) High performance electrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J Appl Polym Sci 134:45177. https://doi.org/10.1002/app.45177

    Article  CAS  Google Scholar 

  47. Solarajan AK, Murugadoss V, Angaiah S (2016) Montmorillonite embedded electrospun PVdF–HFP nanocomposite membrane electrolyte for Li-ion capacitors. Appl Mater Today 5:33–40. https://doi.org/10.1016/j.apmt.2016.09.002

    Article  Google Scholar 

  48. Liu F-Q, Wang W-P, Yin Y-X, Zhang S-F, Shi J-L, Wang L, Zhang X-D, Zheng Y, Zhou J-J, Li L, Guo Y-G (2018) Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci Adv 4:eaat5383. https://doi.org/10.1126/sciadv.aat5383

    Article  CAS  Google Scholar 

  49. Khani H, Kalami S, Goodenough JB (2020) Micropores-in-macroporous gel polymer electrolytes for alkali metal batteries. Sustain Energy Fuels 4:177–189. https://doi.org/10.1039/C9SE00690G

    Article  CAS  Google Scholar 

  50. Syahidah SN, Majid SR (2013) Super-capacitive electro-chemical performance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors. Electrochim Acta 112:678–685. https://doi.org/10.1016/j.electacta.2013.09.008

    Article  CAS  Google Scholar 

  51. Jin J, Wen Z, Liang X, Cui Y, Wu X (2012) Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery. Solid State Ion 225:604–607. https://doi.org/10.1016/j.ssi.2012.03.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51702371), High-level Talent Gathering Project in Hunan Province (2019RS1059), Graduate Innovation Foundation of Hunan Province (Nos. 2018XTUXJ049 and 201810530017) and Postgraduate Education Reform Project of Hunan Province (Grant Nos. CX20190423).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhuai Ding or Ping Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Li, F., Mei, Y. et al. Gel polymer electrolyte based on hydrophilic–lipophilic TiO2-modified thermoplastic polyurethane for high-performance Li-ion batteries. J Mater Sci 56, 2474–2485 (2021). https://doi.org/10.1007/s10853-020-05360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05360-5

Navigation