Skip to main content

Advertisement

Log in

A novel pyridinium-based organic ionic plastic crystal for ambient temperature solid polymer electrolytes

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The development of solid polymer electrolyte (SPE) systems is a promising strategy for improving the safety of lithium batteries. However, the practical implementation of these systems is often hindered by their limited ionic conductivity at ambient temperatures and poor interfacial contact with the electrodes. To address these issues, a novel pyridine-based organic ionic plastic crystal (OIPC) was synthesized and combined with poly(vinylidene fluoride-co-hexafluoropropylene) (PVH) and lithium bis(fluorosulfonyl)imide (LiFSI) to create a porous SPE, which was named SPE-Pyr1FSI/PVH (80:20). The SPE possessed desirable characteristics such as remarkable mechanical properties, nonflammability, high ionic conductivity (1.18 mS cm−1 at 25 °C), and a large electrochemical window (5.85 V vs. Li+/Li). Moreover, solid-state Li/LiFePO4 cells based on this SPE exhibited excellent rate capability, as well as cycling performance at ambient temperature. Specifically, the discharge capacity of the cells remained at 134.0 mAh g −1 at 1.0 C current density over 500 cycles. This study provides new insights into the design of ambient temperature solid-state electrolytes for lithium batteries and highlights the efficacy of OIPC in enhancing the performance of SPEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be available on reasonable request.

References

  1. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C (2019) Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater 18:1278–1291. https://doi.org/10.1038/s41563-019-0431-3

    Article  CAS  PubMed  Google Scholar 

  2. Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103. https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  Google Scholar 

  3. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386. https://doi.org/10.1016/j.nanoen.2017.01.028

    Article  CAS  Google Scholar 

  4. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  5. Liping Y, Jun M, Jianjun Z, Jingwen Z, Shanmu D, Zhihong L, Guanglei C, Liquan C (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164. https://doi.org/10.1016/j.ensm.2016.07.003

    Article  Google Scholar 

  6. Mauger A, Julien CM, Paolella A, Armand M, Zaghib K (2019) Building better batteries in the solid state: a review. Materials 12:3892. https://doi.org/10.3390/ma12233892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liao Z, Huang J, Chen W, Saito N, Zhang Z, Yang L, Hirano S-i (2020) Safe, superionic conductive and flexible “polymer-in-plastic salts” electrolytes for dendrite-free lithium metal batteries. Energy Storage Mater 33:442–451. https://doi.org/10.1016/j.ensm.2020.09.003

    Article  Google Scholar 

  8. Yu L, Guo S, Lu Y, Li Y, Lan X, Wu D, Li R, Wu S, Hu X (2019) Highly tough, Li-metal compatible organic-inorganic double-network solvate ionogel. Adv Energy Mater 9:1900257.1-1900257.11. https://doi.org/10.1002/aenm.201900257

    Article  CAS  Google Scholar 

  9. Wang H, Sheng L, Yasin G, Wang L, Xu H, He X (2020) Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater 33:188–215. https://doi.org/10.1016/j.ensm.2020.08.014

    Article  Google Scholar 

  10. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4:10038–10069. https://doi.org/10.1039/c6ta02621d

    Article  CAS  Google Scholar 

  11. Croce F, Appetecchi GB, Persi L, Scrosati BJN (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458. https://doi.org/10.1038/28818

    Article  CAS  Google Scholar 

  12. Luo S, Zhao E, Gu Y, Huang J, Zhang Z, Yang L, Hirano S-i (2021) Rational design of fireproof fiber-network reinforced 3D composite solid electrolyte for dendrite-free solid-state batteries. Chem Eng J 421:127771. https://doi.org/10.1016/j.cej.2020.127771

    Article  CAS  Google Scholar 

  13. Cui W-W, Tang D-Y, Gong Z-l, Guo Y-D (2012) Performance enhancement induced by electrospinning of polymer electrolytes based on poly(methyl methacrylate-co-2-acrylamido-2-methylpropanesulfonic acid lithium). J Mater Sci 47:6276–6285. https://doi.org/10.1007/s10853-012-6547-3

    Article  CAS  Google Scholar 

  14. Angulakshmi N, Yoo D, Nahm K, Gerbaldi C, Stephan A (2013) MgAl2SiO6-incorporated poly(ethylene oxide)-based electrolytes for all-solid-state lithium batteries. Ionics 20(2):151–156. https://doi.org/10.1007/s11581-013-0985-z

    Article  CAS  Google Scholar 

  15. Ramakrishnan S, Velusamy D, Sengodan S, Nagaraju G, Kim D, Kim A, Yoo D (2022) Rational design of multifunctional electrocatalyst: an approach towards efficient overall water splitting and rechargeable flexible solid-state zinc–air battery. Appl Catal B: Environ 300:442–451. https://doi.org/10.1016/j.apcatb.2021.120752

    Article  CAS  Google Scholar 

  16. Hu A, Liao Z, Huang J, Zhang Y, Yang Q, Zhang Z, Yang L, Hirano S-i (2022) In-situ construction of dual lithium-ion migration channels in polymer electrolytes for lithium metal batteries. Chem Eng J 448:137661. https://doi.org/10.1016/j.cej.2022.137661

    Article  CAS  Google Scholar 

  17. Zhu H, MacFarlane DR, Pringle JM, Forsyth M (2019) Organic ionic plastic crystals as solid-state electrolytes. Trends Chem 1:126–140. https://doi.org/10.1016/j.trechm.2019.01.002

    Article  CAS  Google Scholar 

  18. He XM, Pu WH, Wang L, Jiang CY, Wan CR (2006) Plastic crystals: an effective ambient temperature all-solid-state electrolyte for lithium batteries. Prog Chem 18:24–29. https://doi.org/10.1007/s10589-005-3075-y

    Article  CAS  Google Scholar 

  19. Long S, MacFarlane DR, Forsyth M (2003) Fast ion conduction in molecular plastic crystals. Solid State Ionics 161:105–112. https://doi.org/10.1016/s0167-2738(03)00208-x

    Article  CAS  Google Scholar 

  20. MacFarlane DR, Huang JH, Forsyth M (1999) Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 402:792–794. https://doi.org/10.1038/45514

    Article  CAS  Google Scholar 

  21. Alarco PJ, Abu-Lebdeh Y, Abouimrane A, Armand M (2004) The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat Mater 3:476–481. https://doi.org/10.1038/nmat1158

    Article  CAS  PubMed  Google Scholar 

  22. Qiu G, Shi Y, Huang B (2022) A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries. Nano Res 15:5153–5160. https://doi.org/10.1007/s12274-022-4183-z

    Article  CAS  Google Scholar 

  23. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5:2326–2352. https://doi.org/10.1016/j.chempr.2019.05.009

    Article  CAS  Google Scholar 

  24. Lu Z, Yu J, Wu J, Effat MB, Kwok SCT, Lyu Y, Yuen MMF, Ciucci F (2019) Enabling room-temperature solid-state lithium-metal batteries with fluoroethylene carbonate-modified plastic crystal interlayers. Energy Storage Mater 18:311–319. https://doi.org/10.1016/j.ensm.2018.08.021

    Article  Google Scholar 

  25. Li X, Zhang Z, Li S, Yang L, Hirano S-i (2016) Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries. J Power Sources 307:678–683. https://doi.org/10.1016/j.jpowsour.2016.01.032

    Article  CAS  Google Scholar 

  26. Yang K, Liao Z, Zhang Z, Yang L, S-iJMl H (2019) Ionic plastic crystal-polymeric ionic liquid solid-state electrolytes with high ionic conductivity for lithium ion batteries. Mater Lett 236:554–557. https://doi.org/10.1016/j.matlet.2018.11.003

    Article  CAS  Google Scholar 

  27. Jin L, Howlett PC, Pringle JM, Janikowski J, Armand M, MacFarlane DR, Forsyth M (2014) An organic ionic plastic crystal electrolyte for rate capability and stability of ambient temperature lithium batteries. Energy Environ Sci 7:3352–3361. https://doi.org/10.1039/c4ee01085j

    Article  CAS  Google Scholar 

  28. Yoshizawa-Fujita M, Kishi E, Suematsu M, Takekawa T, Rikukawa M (2014) A plastic electrolyte material in a highly desirable temperature range: N-ethyl-N-methylpyrrolidinium Bis(fluorosulfonyl)amide. Chem Lett 43:1909–1911. https://doi.org/10.1246/cl.140833

    Article  CAS  Google Scholar 

  29. Adebahr J, Grozema FC, deLeeuw SW, MacFarlane DR, Forsyth M (2006) Structure and dynamics of the plastic crystal tetramethylammonium dicyanamide - a molecular dynamics study. Solid State Ionics 177:2845–2850. https://doi.org/10.1016/j.ssi.2006.07.061

    Article  CAS  Google Scholar 

  30. Fujii K, Mukai T, Nishikawa K (2014) Crystal structure of 1,3-dimethylimidazolium bis(fluorosulfonyl)amide: unexpectedly high melting point arising from polydentate hydrogen bonding. Chem Lett 43:405–407. https://doi.org/10.1246/cl.130982

    Article  CAS  Google Scholar 

  31. Qian Z, Fitzgerald K, Boyle PD, Henderson WAJCoM, (2010) Phase behavior and crystalline phases of ionic liquid-lithium salt mixtures with 1-alkyl-3-methylimidazolium Salts†. Chem Mater 22:1203–1208. https://doi.org/10.1021/cm902691v

    Article  CAS  Google Scholar 

  32. Yang K, Zhang Z, Liao Z, Yang L, SiJC H (2018) Organic ionic plastic crystal-polymer solid electrolytes with high ionic conductivity and mechanical ability for solid-state lithium ion batteries. Chemistry Select 3:12595–12599. https://doi.org/10.1002/slct.201803094

    Article  CAS  Google Scholar 

  33. Jin L, Nairn KM, Forsyth CM, Seeber AJ, Macfarlane DR, Howlett PC, Forsyth M, Pringle JMJJotACS, (2012) Structure and transport properties of a plastic crystal ion conductor: diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. J Am Chem Soc 134:9688. https://doi.org/10.1021/ja301175v

    Article  CAS  PubMed  Google Scholar 

  34. Fan L-Z, Hu Y-S, Bhattacharyya AJ, Maier J (2007) Succinonitrile as a versatile additive for polymer electrolytes. Adv Funct Mater 17:2800–2807. https://doi.org/10.1002/adfm.200601070

    Article  CAS  Google Scholar 

  35. Bruce PG, Vincent CA (1987) Steady-state current flow in solid binary electrolyte cells. J Electroanal Chem 225:1–17. https://doi.org/10.1016/0022-0728(87)80001-3

    Article  CAS  Google Scholar 

  36. MacFarlane DR, Forsyth M (2001) Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv Mater 13:957. https://doi.org/10.1002/1521-4095(200107)13/3A12/13%3c957/3A/3AAID-ADMA957%3e3.0.CO/3B2-/23

    Article  CAS  Google Scholar 

  37. Zhang J, Bai Y, Sun XG, Li Y, Guo B, Chen J, Veith GM, Hensley DK, Paranthaman MP, Goodenough JB (2015) Superior conductive solid-like electrolytes: nanoconfining liquids within the hollow structures. Nano Lett 15:3398–3402. https://doi.org/10.1021/acs.nanolett.5b00739

    Article  CAS  PubMed  Google Scholar 

  38. Howlett PC, Ponzio F, Fang J, Lin T, Jin L, Iranipour N, Efthimiadis J (2013) Thin and flexible solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes for device applications. Phys Chem Chem Phys 15:13784–13789. https://doi.org/10.1039/c3cp51986d

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are indebted to the National Key Research and Development Program (No. 2019YFE0122500), the National Natural Science Foundation of China (Nos. 21878185 and 22178216), and the Natural Science Foundation of Shanghai (No. 21ZR1434800).

Author information

Authors and Affiliations

Authors

Contributions

Chenxi Huang: conceptualization, methodology, formal analysis, writing original draft. Zhu Liao: resources, investigation. Zhengxi Zhang: supervision. Li Yang: funding acquisition, project administration. Akihiro Orita: formal analysis.

Corresponding authors

Correspondence to Zhengxi Zhang or Li Yang.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2623 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Liao, Z., Zhang, Z. et al. A novel pyridinium-based organic ionic plastic crystal for ambient temperature solid polymer electrolytes. Ionics 29, 3119–3128 (2023). https://doi.org/10.1007/s11581-023-05017-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05017-8

Keywords

Navigation