Skip to main content
Log in

Solid polymer electrolyte based on PEO/PVDF/Mg(ClO4)2-[EMIM][ESO4] system for rechargeable magnesium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Solid polymer electrolyte (SPE) membranes were prepared using the solution-cast technique by mixing polyethylene oxide/polyvinylidene fluoride/magnesium perchlorate (PEO/PVDF/Mg(ClO4)2) ternary system with concentrations of 10, 20, 30, and 40 wt. % of the ionic liquid (IL) 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM][ESO4]. The SPE membrane of SPE:IL (60:40 wt. %) demonstrated several electrochemical properties that satisfy a potential application in rechargeable magnesium ion batteries (MIBs) such as good conductivity at room temperature (~ 5.4 × 10−5 S cm−1) and high Mg2+ ion transport number (\({t}_{{Mg}^{2+}} \sim 0.34\)). The results by X-ray diffraction (XRD) revealed an amorphous structure, which favored the diffusion of Mg2+ ions within the SPE structure. In addition, differential thermal analysis (DTA) showed the melting point at ~ 329 K. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of characteristic functional groups in SPE membrane, identified by the appearance of the absorption bands C–O–C, CH2, C–O, ClO4, and C–O–S–O. The electrochemical stability window of ~ 4.2 V was determined using linear sweep voltammetry (LSV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The findings of this study are supported by data which can be made available by the corresponding author upon a reasonable institutional request.

References

  1. Bumjun P, Jennifer LS (2020) Review—polymer electrolytes for magnesium batteries: forging away from analogs of lithium polymer electrolytes and towards the rechargeable magnesium metal polymer battery. J Electrochem Soc 167:070545

    Article  Google Scholar 

  2. Yang LL, McGhie AR, Farrington GC (1986) Ionic conductivity in complexes of poly(ethylene oxide) and MgCI2. J Electrochem Soc 133:1380

    Article  CAS  Google Scholar 

  3. Anji RP, Ranveer R (2013) Preparation and characterization of PVA based solid polymer electrolytes for electrochemical cell applications. Chinese J Polym Sci 31:641–648

    Article  Google Scholar 

  4. Anji RP, Ranveer K (2011) Conductivity, XRD, and FTIR studies of new Mg2+-ion-conducting solid polymer electrolytes: [PEG:Mg(CH3COO)2]. J Korean Phys Soc 59:114–118

    Article  Google Scholar 

  5. Basha SKS, Sundari GS, Kumar KV (2018) Rao MC (2018) Preparation and dielectric properties of PVP-based polymer electrolyte films for solid-state battery application. Polym Bull 75:925–945

    Article  CAS  Google Scholar 

  6. Aziz AA, Tominaga Y (2018) Magnesium ion-conductive poly(ethylene carbonate) electrolytes. Ionics 24:3475–3481

    Article  Google Scholar 

  7. Jeong SK, Jo YK, Jo NJ (2006) Decoupled ion conduction mechanism of poly(vinyl alcohol) based Mg-conducting solid polymer electrolyte. Electrochim Acta 52:1549–1555

    Article  CAS  Google Scholar 

  8. Viviani M, Meereboer NL, Saraswati NLPA, Loos K, Portale G (2020) Lithium and magnesium polymeric electrolytes prepared using poly(glycidyl ether)-based polymers with short grafted chains. Polym Chem 11:2070

    Article  CAS  Google Scholar 

  9. Park B, Andersson R, Pate SG, Liu J, O’Brien CP, Hernández G, Mindemark J, Schaefer JL (2021) Ion coordination and transference in magnesium polymer electrolytes based on polyester-co-polycarbonate. Energy Mater Adv 2021: 1–14.

  10. Helen PA, Selvin PC, Lakshmi D, Diana MI (2022) Amelioration of ionic conductivity (303K) with the supplement of MnO2 filler in the chitosan biopolymer electrolyte for magnesium batteries. Polym Bull 2022:1–30

    Google Scholar 

  11. Rathika R, Suthanthiraraj SA (2016) Ionic interactions and dielectric relaxation of PEO/PVDF-Mg[(CF3SO2)2N2)] blend electrolytes for magnesium ion rechargeable batteries. Macromol Res 24:422–428

    Article  CAS  Google Scholar 

  12. Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly(ethylene oxide) (PEO) - poly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polym J 89:249–262

    Article  CAS  Google Scholar 

  13. Bhatt PJ, Pathak N, Mishra K, Kanchan DK, Kumar D (2022) Effect of different cations on ion-transference behavior in polymer gel electrolytes intended for application in flexible electrochemical devices. J Electron Mater 51:1371–1384

    Article  CAS  Google Scholar 

  14. Singh R, Janakiraman S, Agrawal A, Ghosh S, Venimadhav A, Biswas K (2019) An amorphous poly(vinylidene fluoride-co-hexafluoropropylene) based gel polymer electrolyte for magnesium ion battery. J Electroanal Chem 858:113788

    Article  Google Scholar 

  15. Ponraj T, Ramalingam A, Selvasekarapandian S, Srikumar SR, Manjuladevi R (2020) Plasticized solid polymer electrolyte based on triblock copolymer poly(vinylidene chloride-co-acrylonitrile-co-methyl methacrylate) for magnesium ion batteries. Polym Bull 78:35–57

    Article  Google Scholar 

  16. Mishra K, Kanchan DK, Gohel K, Sharma P, Kumar D (2022) Urea-assisted ion-transference behavior in magnesium ion conducting solid polymer electrolyte membranes intended for magnesium batteries. Chem Pap 76:827–839

    Article  CAS  Google Scholar 

  17. Huy VPH, So S, Hur J (2021) Inorganic fillers in composite gel polymer electrolytes for high-performance lithium and non-lithium polymer batteries. J Nanomater 11:614

    Article  CAS  Google Scholar 

  18. Dhatarwal P, Sengwa RJ (2019) Polymer compositional ratio-dependent morphology, crystallinity, dielectric dispersion, structural dynamics, and electrical conductivity of PVDF/PEO blend films. Macromol Res 27:1009–1023

    Article  CAS  Google Scholar 

  19. Mohamadi M, Garmabi H, Papila M (2017) Conjugated dual-phase transitions in crystalline/ crystalline blend of poly(vinylidene fluoride)/ poly(ethylene oxide). Polym Bull 74:2117–2135

    Article  CAS  Google Scholar 

  20. Dhatarwal P, Sengwa RJ (2019) Dielectric relaxation, Li-ion transference, electrochemical, and structural behaviour of PEO/PVDF/LiClO4/TiO2/PC-based plasticized nanocomposite solid polymer electrolyte films. Compos Commun 17:182–191

    Article  Google Scholar 

  21. Rathika R, Padmaraj O, Suthanthiraraj SA (2018) Electrical conductivity and dielectric relaxation behaviour of PEO/PVdF-based solid polymer blend electrolytes for zinc battery applications. Ionics 24:243–255

    Article  CAS  Google Scholar 

  22. Maheshwaran C, Kanchan DK, Gohel K, Mishra K, Kumar D (2020) Effect of Mg(CF3SO3)2 concentration on structural and electrochemical properties of ionic liquid incorporated polymer electrolyte membranes. J Solid State Electrochem 24:655–665

    Article  CAS  Google Scholar 

  23. Tang X, Muchakayala R, Song S, Zhang Z, Polu AR (2016) A study of structural, electrical, and electrochemical properties of PVdF-HFP gel polymer electrolyte films for magnesium ion battery applications. J Ind Eng Chem 37:67–74

    Article  CAS  Google Scholar 

  24. Gupta R, Gamare J, Jayachandran K, Gupta SK, Lohithakshan KV, Kamat JV (2015) Electrochemical, thermodynamic and spectroscopic investigations of CeIII in a 1-ethyl-3-methylimidazolium ethyl sulfate (EMIES) ionic liquid. Eur J Inorg Chem 2015:4396–4401

    Article  CAS  Google Scholar 

  25. Ju Q, Shi Y, Kan J (2013) Performance study of magnesium-polyaniline rechargeable battery in 1-ethyl-3-methylimidazolium ethyl sulfate electrolyte. Synth Met 178:27–33

    Article  CAS  Google Scholar 

  26. Saroj AL, Singh RK (2012) Thermal, dielectric and conductivity studies on PVA/Ionic liquid [EMIM][EtSO4] based polymer electrolytes. J Phys Chem Solids 73:162–168

    Article  CAS  Google Scholar 

  27. Polu AR, Rhee HW (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrog Energy 42:7212–7219

    Article  CAS  Google Scholar 

  28. Amani AO, Paul N, Muhammad T, Ahmad K, Karim EA, Bassam ET, Malek A (2021) Novel composite membrane based on zirconium phosphate-ionic liquids for high temperature PEM fuel cells. Int J Hydrog Energy 46:6100–6109

    Article  Google Scholar 

  29. Daniela MC, Liliana CF, Pedro MM, Clara GA, Carlos MC, Javier R, Senentxu LM (2020) Ionic liquid–polymer composites: a new platform for multifunctional applications. Adv Funct Mater 30:1909736

    Article  Google Scholar 

  30. Jesús GT, Dalmy LOG, Lorena LGT, Luis CTG, Salomé MPA, Edgar GJ, Idalia G, Eduardo MS (2023) Magnesium bis(oxalate)borate as a potential electrolyte for rechargeable magnesium ion batteries. J Electron Mater 52:1250–1257

    Google Scholar 

  31. Zhang Y, Xiao Q, Lei G, Li Z (2015) An investigation of a novel MnO2 network-Ni/ PVDF double shell/core membrane as an anode for lithium ion batteries. Phys Chem Phys 17:18699–18704

    Article  CAS  Google Scholar 

  32. Atkore ST, Bondle GM, Kamble VT, Varala R, Adil SF, Hatshan MR, Shaik B (2021) Synthesis, characterization and catalytic evaluation of ZrCl4:Mg(ClO4)2 for the synthesis of 1,3-diaryl-3-(phenylthio)propan-1-one. J Saudi Chem Soc 25:101359

    Article  CAS  Google Scholar 

  33. Ponmani S, Prabhu MR (2018) Development and study of solid polymer electrolytes based on PVdFHFP/PVAc: Mg(ClO4)2 for Mg ion batteries. J Mater Sci: Mater Electron 29:15086–15096

    CAS  Google Scholar 

  34. Ahmed MB, Nofal MM, Aziz SB, Al-Saeedi SI, Brza MA, Dannoun EMA, Murad AR (2022) The study of ion transference parameters associated with dissociated cation using EIS model in solid polymer electrolytes (SPEs) based on PVA host polymer: XRD, FTIR, and dielectric properties. Arab J Chem 15:104196

    Article  CAS  Google Scholar 

  35. Reddy MJ, Chu PP (2002) Ion pair formation and its effect in PEO: Mg solid polymer electrolyte system. J Power Sources 109:340–346

    Article  Google Scholar 

  36. Nkuna AA, Akpan ED, Obot IB, Verma C, Ebenso EE, Murulana LC (2020) Impact of selected ionic liquids on corrosion protection of mild steel in acidic medium: Experimental and computational studies. J Mol Liq 314:113609

    Article  CAS  Google Scholar 

  37. Arulsankar A, Kulasekarapandian K, Jeya S, Jayanthi S, Sundaresan B (2013) Investigation of the structural, electrical and morphological properties of Mg2+ ion conducting nanocomposite solid polymer electrolytes based on PMMA. Int J Innov Res Technol Sci Eng 2:4883–4890

    Google Scholar 

  38. Kiefer J, Fries J, Leipertz A (2007) Experimental vibrational study of imidazolium-based ionic liquids: Raman and infrared spectra of 1-ethyl-3- methylimidazolium Bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl Spectrosc 61:1306–1311

    Article  CAS  PubMed  Google Scholar 

  39. Kumar Y, Hashmi SA, Pandey GP (2011) Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte. Electrochim Acta 56:3864–3873

    Article  CAS  Google Scholar 

  40. Rathika R, Suthanthiraraj SA (2018) Influence of 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide plasticization on zinc-ion conducting PEO/PVdF blend gel polymer electrolyte. J Mater Sci: Mater Electron 29:19632–19643

    CAS  Google Scholar 

  41. Deivanayagam R, Cheng M, Wang M, Vasudevan V, Foroozan T, Medhekar NV, Reza SY (2019) A composite polymer electrolyte for highly cyclable room-temperature solid-state magnesium batteries. ACS Appl Energy Mater 2:7980–7990

    Article  CAS  Google Scholar 

  42. Correia DM, Fernandes LC, Martins PM, Clara GA, Costa CM, Reguera J, Senentxu LM (2020) Ionic liquid–polymer composites: a new platform for multifunctional applications. Adv Funct Mater 30:1909736

    Article  CAS  Google Scholar 

  43. Shenbagavalli S, Muthuvinayagam M, Revathy MS, Sasikumar P (2022) Ionic conductivity and dielectric studies on PVP/PEO/(NH4)2Ce(NO3)6 based solid polymer-blend electrolytes. Bull Mater Sci 45:125

    Article  CAS  Google Scholar 

  44. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328

    Article  CAS  Google Scholar 

  45. Maheshwaran C, Mishra K, Kanchan DK, Kumar D (2020) Mg2+ conducting polymer gel electrolytes: physical and electrochemical investigations. Ionics 26:2969–2980

    Article  CAS  Google Scholar 

  46. Maheshwaran C, Kanchan DK, Mishra K, Kumar D, Gohel K (2020) Effect of active MgO nano-particles dispersion in small amount within magnesium-ion conducting polymer electrolyte matrix. Nano-Struct Nano-Objects 24:100587

    Article  CAS  Google Scholar 

  47. Maheshwaran C, Kanchan DK, Mishra K, Kumar D, Gohe K (2020) Flexible magnesium-ion conducting polymer electrolyte membranes: mechanical, structural, thermal, and electrochemical impedance spectroscopic properties. J Mater Sci Mater Electron 31:15013–15027

    Article  CAS  Google Scholar 

  48. Singh R, Maheshwaran C, Kanchan DK, Mishra K, Singh PK, Kumar D (2021) Ion-transport behavior in tetraethylene glycol dimethyl ether incorporated sodium ion conducting polymer gel electrolyte membranes intended for sodium battery application. J Mol Liq 336:116594

    Article  CAS  Google Scholar 

  49. Sarangika HNM, Dissanayake MAKL, Senadeera GKR, Rathnayake RRDV, Pitawala HMJC (2017) Polyethylene oxide and ionic liquid-based solid polymer electrolyte for rechargeable magnesium batteries. Ionics 23:2829–2835

    Article  CAS  Google Scholar 

  50. Guanghai C, Ying B, Yongsheng G, Zhaohua W, Kun Z, Qiao N, Feng W, Huajie X, Chuan W (2019) Inhibition of crystallization of poly(ethylene oxide) by ionic liquid: insight into plasticizing mechanism and application for solid-state sodium ion batteries. ACS Appl Mater Interfaces 11:43252–43260

    Article  Google Scholar 

  51. Shishir KS, Himani G, Liton B, Shalu VKS, Alok KT, Yogendra LV, Rajendra KS (2018) Electrochemical characterization of ionic liquid based gel polymer electrolyte for lithium battery application. Ionics 24:1895–1906

    Article  Google Scholar 

  52. Buvaneshwari P, Mathavan T, Selvasekarapandian S, Krishna MV, Meera N (2022) Preparation and characterization of biopolymer electrolyte based on gellan gum with magnesium perchlorate for magnesium battery. Ionics 28:3843–3854

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank for the laboratory equipment used in this project (Materials Laboratory 2) at División de Estudios de Posgrado. Jesús Guzmán-Torres also thanks to CONACYT for the scholarship awarded to continue the PhD studies.

Funding

Authors would like to thank Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Jesús Guzmán-Torres: investigation, validation, software, formal analysis, and writing—original draft. Edgar González-Juárez: electrochemical characterization testing participation. María de la Luz Hernández-Nieto: helped with solid polymer electrolytes preparation. Arián Espinosa-Roa: DFT study participation. Eduardo M. Sánchez: conceptualization, supervision, writing—review and editing, and funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Eduardo M. Sánchez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 737 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Torres, J., González-Juárez, E., de la Luz Hernández-Nieto, M. et al. Solid polymer electrolyte based on PEO/PVDF/Mg(ClO4)2-[EMIM][ESO4] system for rechargeable magnesium ion batteries. Ionics 29, 2341–2349 (2023). https://doi.org/10.1007/s11581-023-04968-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04968-2

Keywords

Navigation