Skip to main content

Advertisement

Log in

Freestanding carbon nanotube/orthorhombic V2O5 nanobelt films for advanced aqueous zinc-ion batteries: electrochemical performance and in situ Raman spectroscopy investigations

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Among many energy storage equipment, aqueous zinc-ion batteries (AZIBs) have attracted much attention because of their high safety and low cost. Herein, orthorhombic V2O5 nanobelts (NBs-V2O5) are prepared, and it is compounded with carbon nanotubes (CNTs), achieving freestanding NBs-V2O5/CNTs composite films. When NBs-V2O5/CNTs cathode is used for AZIBs, the assembled batteries provide excellent rate capability, large capacity of 380 mAh g−1 at 0.2 A g−1, and high capacity retention rate of 95% after 1000 cycles at the current density of 5 A g−1. Besides, due to the outstanding conductivity and flexibility of the NBs-V2O5/CNTs composite films, soft-package batteries are assembled with steady electrochemical performance at various bending states. The NBs-V2O5/CNTs cathode exhibits a Zn2+/H+ insertion/extraction storage mechanism during charge/discharge processes by in situ Raman spectroscopy investigations, leading to fast kinetics of ion transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang XY, Feng XL, Jin X, Shao MZ, Yan BL, Yan JM, Zhang Y, Zhang XB (2019) An illumination-assisted flexible self-powered energy system based on a Li-O2 battery Angew. Chem Int Ed 58(46):16411–16415

    Article  CAS  Google Scholar 

  2. Peng Y, Zeng YX, Zhang HZ, Yu MH, Tong YX, Lu XH (2019) Flexible Zn-ion batteries: recent progresses and challenges. Small 15(7):1804760

    Article  CAS  Google Scholar 

  3. Xu XT, Tang J, Qian HY, Hou SJ, Bando Y, Hossain MSA, Pan LK, Yamauchi Y (2017) Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl Mater Interfaces 9(44):38737–38744

    Article  CAS  PubMed  Google Scholar 

  4. Li XX, Ding K, Gao B, Li QW, Li YY, Fu JJ, Zhang XM, Chu PK, Huo KF (2017) Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano Energy 40:655–662

    Article  CAS  Google Scholar 

  5. Zhao YT, Huang GS, Li YL, Edy R, Gao PB, Tang H, Bao ZH, Mei YF (2018) Three-dimensional carbon/ZnO nanomembrane foam as an anode for lithium-ion battery with long-life and high areal capacity. J Mater Chem A 6:7227–7235

    Article  CAS  Google Scholar 

  6. Liu J (2013) Addressing the grand challenges in energy storage. Adv Funct Mater 23(8):924–928

    Article  CAS  Google Scholar 

  7. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  8. Liu ZX, Qin LP, Lu BG, Wu XW, Liang SQ, Zhou J (2022) Issues and opportunities facing aqueous Mn2+/MnO2-based batteries. Chemsuschem. https://doi.org/10.1002/cssc.202200348

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chao DL, Zhou WH, Xie FX, Ye C, Li H, Jaroniec M, Qiao SZ (2020) Roadmap for advanced aqueous batteries: from design of materials to applications. Sci Adv 6(21):eaba4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fang GZ, Zhou J, Pan AQ, Liang SQ (2018) Recent advances in aqueous zinc-ion batteries. ACS Energy Lett 3(10):2480–2501

    Article  CAS  Google Scholar 

  11. Konarov A, Voronina N, Jo JH, Bakenov Z, Sun YK, Myung ST (2018) Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett 3(10):2620–2640

    Article  CAS  Google Scholar 

  12. Ruan PC, Liang SQ, Lu BG, Fan HJ, Zhou J (2022) Design strategies for high-energy-density aqueous zinc batteries. Angew Chem Int Ed. https://doi.org/10.1002/anie.202200598

    Article  Google Scholar 

  13. Cao LS, Li D, Hu EY, Xu JJ, Deng T, Ma L, Wang Y, Yang XQ, Wang CS (2020) Solvation structure design for aqueous Zn metal batteries. J Am Chem Soc 142(51):21404–21409

    Article  CAS  PubMed  Google Scholar 

  14. Jia H, Wang ZQ, Tawiah B, Wang YD, Chan CY, Fei B, Pan F (2020) Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70:104523

    Article  CAS  Google Scholar 

  15. Li CP, Xie XS, Liu H, Wang PJ, Deng CB, Lu BG, Zhou J, Liang SQ (2021) Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl Sci Rev Ed 9(3):nwab177

    Article  Google Scholar 

  16. Zhang Y, Xu GB, Liu X, Wei XL, Cao JX, Yang LW (2020) Scalable in situ reactive assembly of PPy-coated MnO2 nanowire and carbon nanotube composite as freestanding cathodes for high performance aqueous Zn-ion batteries. ChemElectroChem 7(13):2762–2700

    Article  CAS  Google Scholar 

  17. Zhu YP, Cui Y, Alshareef HN (2021) An anode-free Zn−MnO2 battery. Nano Lett 21(3):1446–1453

    Article  CAS  PubMed  Google Scholar 

  18. Wang DH, Wang LF, Liang GJ, Li HF, Liu ZX, Tang ZJ, Laing JB, Zhi CY (2019) A superior δ-MnO2 cathode and a self- healing Zn-δ-MnO2 battery. ACS Nano 13(9):10643–10652

    Article  CAS  PubMed  Google Scholar 

  19. Zeng YX, Lu XF, Zhang SL, Luan DY, Li S, Lou XW (2021) Construction of Co–Mn Prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew Chem Int Ed 60(41):22189–22194

    Article  CAS  Google Scholar 

  20. Liang YL, Jing Y, Gheytani S, Lee KY, Liu P, Facchetti A, Yao Y (2017) Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat Mater 16(8):841–848

    Article  CAS  PubMed  Google Scholar 

  21. Tang CR, Singh G, Housel LM, Kim SJ, Kim HJ, Quilty CD, Zhu YM, Wang L, Takeuchi KJ, Takeuchi ES, Marschilok AC (2021) Impact of sodium vanadium oxide (NaV3O8, NVO) material synthesis conditions on charge storage mechanism in Zn-ion aqueous batteries. Phys Chem Chem Phys 23(11):8607–8617

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Li YG, Das P, Zheng SH, Zhou F, Wu ZS (2020) Layer-by-layer stacked amorphous V2O5/graphene 2D heterostructures with strong-coupling effect for high-capacity aqueous zinc-ion batteries with ultra-long cycle life. Energy Storage Mater 31:156–163

    Article  Google Scholar 

  23. Shan LT, Wang YR, Liang SQ, Tang BY, Yang YQ, Wang ZQ, Lu BG, Zhou J (2021) Interfacial adsorption–insertion mechanism induced by phase boundary toward better aqueous Zn-ion battery. InfoMat 3(9):1028–1036

    Article  CAS  Google Scholar 

  24. Zhang WW, Tang C, Lan BX, Chen LN, Tang W, Zuo CL, Dong SJ, An QY, Luo P (2020) K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance. J. Alloys Compd 819:152971

    Article  CAS  Google Scholar 

  25. Wang X, Li YG, Wang S, Zhou F, Das P, Sun CL, Zheng SH, Wu ZS (2020) 2D Amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability. Adv Energy Mater 10(22):2000081

    Article  CAS  Google Scholar 

  26. Xu GB, Liu X, Huang SJ, Li L, Wei XL, Cao JX, Yang LW, Chu PK (2020) Freestanding, hierarchical, and porous bilayered NaxV2O5·nH2O/rGO/CNT composites as high-performance cathode materials for nonaqueous K-ion batteries and aqueous zinc-ion batteries. ACS Appl Mater Interfaces 12(1):706–716

    Article  CAS  PubMed  Google Scholar 

  27. Li YK, Huang ZM, Kalambate PK, Zhong Y, Huang ZM, Xie ML, Shen Y, Huang YH (2019) V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 60:752–759

    Article  CAS  Google Scholar 

  28. Liu GY, Xiao Y, Zhang WW, Tang W, Zuo CL, Zhang PP, Dong SJ, Luo P (2021) Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries. Nanotechnolgy 32(31):315405

    Article  CAS  Google Scholar 

  29. Javed MS, Lei H, Wang ZL, Liu BT, Cai X, Mai WJ (2020) 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 70:104573

    Article  CAS  Google Scholar 

  30. Yang YQ, Tang Y, Fang GZ, Shan LT, Guo JS, Zhang WY, Wang C, Wang LB, Zhou J, Liang SQ (2018) Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ Sci 11(11):3157–3162

    Article  CAS  Google Scholar 

  31. Lan BX, Peng Z, Chen LN, Tang C, Dong SJ, Chen C, Zhou M, Chen C, An QY, Luo P (2019) Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries. J Alloys Compd 787:9–16

    Article  CAS  Google Scholar 

  32. Tang FJ, Zhou WJ, Chen MF, Chen JZ, Xu JL (2019) Flexible free-standing paper electrodes based on reduced graphene oxide/d-NaxV2O5·nH2O nanocomposite for high-performance aqueous zinc-ion batteries. Electrochim Acta 328:135137

    Article  CAS  Google Scholar 

  33. Wan F, Huang S, Cao HM, Niu ZQ (2020) Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano 14(6):6752–6760

    Article  CAS  PubMed  Google Scholar 

  34. Liang XY, Hao JY, Tan BC, Lu XH, Li WP (2020) Binder-free CaV3O7 nanobelts with rich oxygen defects as high energy cathode for aqueous Zn-ion battery. J Power Sources 472:228507

    Article  CAS  Google Scholar 

  35. Cao J, Zhang DD, Yue YL, Wang X, Pakornchote T, Bovornratanaraks T, Zhang XY, Wu ZS, Qin JQ (2021) Oxygen defect enriched (NH4)2V10O25⋅8H2O nanosheets for superior aqueous zinc-ion batteries. Nano Energy 84:105876

    Article  CAS  Google Scholar 

  36. Blanc LE, Kundu D, Nazar LF (2020) Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4):771–799

    Article  CAS  Google Scholar 

  37. Qin HG, Chen LL, Wang LM, Chen X, Yang ZH (2019) V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim Acta 306:307–316

    Article  CAS  Google Scholar 

  38. Chen XY, Wang LB, Wang H, Li H, Cheng FY, Chen J (2019) Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J Energy Chem 38:20–25

    Article  Google Scholar 

  39. Hu P, Zhu T, Ma JX, Cai CC, Hu GW, Wang XP, Liu Z, Zhou L, Mai LQ (2019) Porous V2O5 microspheres: a high-capacity cathode material for aqueous zinc–ion batteries. ChemComm 55(58):8486–8489

    CAS  Google Scholar 

  40. Li XL, Ma LT, Zhao YW, Yang Q, Wang DH, Huang ZD, Liang GJ, Mo FN, Liu ZX, Zhi CY (2019) Hydrated hybrid vanadium oxide nanowires as the superior cathode for aqueous Zn battery Mater. Today Energy 14(1):100361

    Article  Google Scholar 

  41. Yan B, Liao L, You YM, Xu XJ, Zheng Z, Shen ZX, Ma J, Tong LM, Yu T (2019) Single-crystalline V2O5 ultralong nanoribbon waveguides. Adv Mater 21(23):2436–2440

    Article  CAS  Google Scholar 

  42. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12(6):518–522

    Article  CAS  PubMed  Google Scholar 

  43. Chen CJ, Wen YW, Hu XL, Ji XL, Yan MY, Mai LQ, Hu P, Shan B, Huang YH (2015) Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6229

    Article  CAS  Google Scholar 

  44. Zhang N, Dong Y, Jia M, Bian X, Wang YY, Qiu MD, Xu J, Z, Liu YC, Jiao LF, Cheng FY, (2018) Rechargeable aqueous Zn−V2O5 battery with high energy density and long cycle life. ACS Energy Lett 3(6):1366–1372

    Article  CAS  Google Scholar 

  45. Zhang JR, Wei SX, Wang HW, Liu HH, Zhang Y, Liu SY, Wang ZJ, Lu XQ (2021) Carbon quantum dots promote coupled valence engineering of V2O5 nanobelts for high-performance aqueous zinc-ion batteries. Chemsuschem 14(9):2076–2083

    Article  CAS  PubMed  Google Scholar 

  46. Sun JJ, Zhang YF, Liu YY, Jiang HM, Dong XY, Hu T, Meng CG (2021) Hydrated vanadium pentoxide/reduced graphene oxide-polyvinyl alcohol (V2O5·nH2O/rGO-PVA) film as a binder-free electrode for solid-state Zn-ion batteries. J Colloid Interf Sci 587:845–854

    Article  CAS  Google Scholar 

  47. Li YW, Xu P, Jiang JQ, Yao JH, Huang B, Yang JW (2021) Facile synthesis of ultra-large V2O5 xerogel flakes and its application as a cathode material for aqueous Zn-ion batteries Mater. Today Commun 26(10):101849

    CAS  Google Scholar 

  48. Liu CZ, Xu WW, Mei CT, Li MC, Xu XW, Wu QL (2021) Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chem Eng J 405:126737

    Article  CAS  Google Scholar 

  49. Wei TY, Li Q, Yang GZ, Wang CX, Adv, (2019) Pseudo-Zn–air and Zn-ion intercalation dual mechanisms to realize high-areal capacitance and long-life energy storage in aqueous Zn battery. Energy Mater 9(34):1901480

    Article  CAS  Google Scholar 

  50. Wang LL, Huang KW, Chen JT, Zheng JR (2019) Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv 5(10):eaax4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ding JW, Du ZG, Gu LQ, Li B, Wang LZ, Wang SW, Gong YJ, Yang SB (2018) Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv Mater 30(26):1800762

    Article  CAS  Google Scholar 

  52. He P, Quan Y, Xu X, Yan M, Yang W, An Q, He L, Mai L (2017) High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 13(47):1702551

    Article  CAS  Google Scholar 

  53. Liu X, Xu GB, Huang SJ, Li L, Wang Y (2021) Free-standing composite of NaxV2O5•nH2O nanobelts and carbon nanotubes with interwoven architecture for large areal capacity and high-rate capability aqueous zinc ion batteries. Electrochim Acta 368:137600

    Article  CAS  Google Scholar 

  54. Ming FW, Liang HF, Lei YJ, Lei YJ, Kandambeth S, Eddaoudi M, Alshareef HN (2018) Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy lett 3(10):2602–2609

    Article  CAS  Google Scholar 

  55. Luo P, Tang W, Cai WY, Yang J, Zhang WW, Zuo CL, Liu GY, Xiao Y, Dong SJ (2021) Charged-optimized ZnO/ ZnV2O4 composite hollow microspheres robust zinc-ion storage capacity. J Solid State Chem 301(15):122371

    Article  CAS  Google Scholar 

  56. Zhang WW, Zuo CL, Tang C, Tang W, Lan BX, Fu XD, Dong SJ, Luo P (2020) The current developments and perspectives of V2O5 as cathode for rechargeable aqueous zinc-ion batteries. Energ Technol 9(2):2000789

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by The National Natural Science Foundation of China (Grant Nos. 12074327, 12002294, and 11774298), the Science and Technology Innovation Program of Hunan Province (Nos. 2020JJ4088 and 2020RC1009), and Innovation-Driven Project of Xiangtan University (CX 20190471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Yang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 845 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, X., Xu, G. et al. Freestanding carbon nanotube/orthorhombic V2O5 nanobelt films for advanced aqueous zinc-ion batteries: electrochemical performance and in situ Raman spectroscopy investigations. Ionics 28, 4709–4718 (2022). https://doi.org/10.1007/s11581-022-04684-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04684-3

Keywords

Navigation