Skip to main content
Log in

An Mg–Al dual doping strategy to enhance the structural stability and long cycle life of LiNi0.8Co0.1Mn0.1O2 cathode material

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiNi0.8Co0.1Mn0.1O2 has been regarded as a promising cathode material due to its high discharge capacity, but it suffers from structural instability during the cycling process. Here, Mg2+ and Al3+ are co-doped in LiNi0.8Co0.1Mn0.1O2 to ameliorate the problem. The analysis results reveal that the dual doping can enlarge the Li+ diffusion channel, lower Li+/Ni2+ disorder, and depress the structural degradation during cycling. Therefore, the electrochemical performance of cathode material with Mg2+ and Al3+ dual doping has been effectively enhanced. In the voltage range of 2.8–4.3 V, the discharge capacity of NCM-MA is 138.8 mAh g−1 after 200 cycles at 1 C, which is 31 mAh g−1 higher than the pristine NCM. Prolonging the cycles to 450 times, the capacity retention is 12.5% higher than the pristine material. Besides, the NCM-MA delivers a high discharge capacity of 150.33 mAh g−1 at 5 C, due to the improvement of Li+ diffusion kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim J, Lee H, Cha H, Yoon M, Park M, Cho J (2017) Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater 8(6):1702028

  2. Myung ST, Maglia F, Park KJ, Yoon CS, Lamp P, Kim SJ, Sun YK (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2(1):196–223

    Article  CAS  Google Scholar 

  3. Liu XL, Wang S, Wang L, Wang K, Wu XZ, Zhou PF, Miao ZC, Zhou J, Zhao Y, Zhuo SP (2019) Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping. J Power Sources 438:227017

  4. Hashigami S, Kato Y, Yoshimi K, Fukumoto A, Cao Z, Yoshida H, Inagaki T, Hashinokuchi M, Haruta M, Doi T, Inaba M (2019) Effect of lithium silicate addition on the microstructure and crack formation of LiNi0.8Co0.1Mn0.1O2 cathode particles. ACS Appl Mater Inter 11(43):39910–39920

  5. Zhang LL, Wang JQ, Yang XL, Liang G, Li T, Yu PL, Ma D (2018) Enhanced electrochemical performance of fast ionic conductor LiTi2(PO4)(3)-coated LiNi1/3Co1/3Mn1/3O2 cathode material. ACS Appl Mater Inter 10(14):11663–11670

  6. Zheng JM, Kan WH, Manthiram A (2015) Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8-xCo0.1Mn0.1+xO2 (0.0 <= x <= 0.08) cathodes for lithium-ion batteries. ACS Appl Mater Inter 7(12):6926–6934

  7. Chen T, Li X, Wang H, Yan XX, Wang L, Deng BW, Ge WJ, Qu MZ (2018) The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material. J Power Sources 392:296–296

  8. Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Edit 54(15):4440–4457

    Article  CAS  Google Scholar 

  9. Chen C, Zhao S, Han X, Zhao X, Ishida T (2017) Experimental investigation on the joining of aluminum alloy sheets using improved clinching process. Materials 10(8):887

  10. Gao S, Cheng YT, Shirpour M (2019) Effects of cobalt deficiency on nickel-rich layered LiNi0.8Co0.1Mn0.1O2 positive electrode materials for lithium-ion batteries. ACS Appl Mater Inter 11(1):982–989

  11. Ishidzu K, Oka Y, Nakamura T (2016) Lattice volume change during charge/discharge reaction and cycle performance of Li[NixCoyMnz]O2. Solid State Ionics 288:176–179

  12. Kondrakov AO, Schmidt A, Xu J, Gesswein H, Monig R, Hartmann P, Sommer H, Brezesinski T, Janek J (2017) Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for Li-ion batteries. J Phys Chem C 121(6):3286–3294

    Article  CAS  Google Scholar 

  13. Liu W, Li XF, Xiong DB, Hao YC, Li JW, Kou HR, Yan B, Li DJ, Lu SG, Koo A, Adair K, Sun XL (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120

  14. Jung SK, Gwon H, Hong J, Park KY, Seo DH, Kim H, Hyun J, Yang W, Kang K (2014) Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater 4(1):1300787

  15. Wu L, Nam K-W, Wang X, Zhou Y, Zheng J-C, Yang X-Q, Zhu Y (2011) Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries. Chem Mater 23(17):3953–3960

    Article  CAS  Google Scholar 

  16. Song BH, Li WD, Oh SM, Manthiram A (2017) Long-life nickel-rich layered oxide cathodes with a uniform Li2ZrO3 surface coating for lithium-ion batteries. ACS Appl Mater Inter 9(11):9718–9725

  17. Ryu H-H, Park K-J, Yoon CS, Sun Y-K (2018) Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater 30(3):1155–1163

  18. Lin F, Markus IM, Nordlund D, Weng TC, Asta MD, Xin HLL, Doeff MM (2014) Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5:3529

  19. Jeong M, Kim H, Lee W, Ahn S-J, Lee E, Yoon W-S (2020) Stabilizing effects of Al-doping on Ni-rich LiNi0.80Co0.15Mn0.05O2 cathode for Li rechargeable batteries. J Power Sources 474:228592

  20. Hou P, Li F, Sun Y, Pan M, Wang X, Shao M, Xu X (2018) Improving Li+ kinetics and structural stability of nickel-rich layered cathodes by heterogeneous inactive-Al3+ doping. ACS Sustain Chem Eng 6(4):5653–5661

  21. Li H, Zhou P, Liu F, Li H, Cheng F, Chen J (2019) Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries. Chem Sci 10(5):1374–1379

    Article  CAS  Google Scholar 

  22. Hu G, Zhang M, Liang L, Peng Z, Du K, Cao Y (2016) Mg–Al–B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage. Electrochim Acta 190:264–275

  23. Li J, Zhang M, Zhang D, Yan Y, Li Z (2020) An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode. Chem Eng J 402:126195

  24. Park K, Ham DJ, Park SY, Jang J, Yeon D-H, Moon S, Ahn SJ (2020) High-Ni cathode material improved with Zr for stable cycling of Li-ion rechargeable batteries. RSC Adv 10(45):26756–26764

    Article  CAS  Google Scholar 

  25. Ryu H-H, Park N-Y, Seo JH, Yu Y-S, Sharma M, Mücke R, Kaghazchi P, Yoon CS, Sun Y-K (2020) A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries. Mater Today 36:73–82

    Article  CAS  Google Scholar 

  26. Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phy Rev B 74(9):094105

  27. Li YC, Xiang W, Wu ZG, Xu CL, Xu YD, Xiao Y, Yang ZG, Wu CJ, Lv GP, Guo XD (2018) Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochim Acta 291:84–94

  28. Xue ZC, Qi XY, Li LY, Li W, Xu L, Xie YQ, Lai XW, Hu GR, Peng ZD, Cao YB, Du K (2018) Sodium doping to enhance electrochemical performance of overlithiated oxide cathode materials for Li-ion batteries via Li/Na ion-exchange method. ACS Appl Mater Inter 10(32):27141–27149

    Article  CAS  Google Scholar 

  29. Qiu L, Xiang W, Tian W, Xu C-L, Li Y-C, Wu Z-G, Chen T-R, Jia K, Wang D, He F-R, Guo X-D (2019) Polyanion and cation co-doping stabilized Ni-rich Ni–Co–Al material as cathode with enhanced electrochemical performance for Li-ion battery. Nano Energy 63:103818

  30. Wang B, Xu L, Guo B, Zhang H (2021) Process and performance characteristics of an improved friction-stir riveting process. J Manuf Process 62:234–246

    Article  Google Scholar 

  31. Woo SW, Myung ST, Bang H, Kim DW, Sun YK (2009) Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta 54:3851–3856

  32. Zheng JM, Yan PF, Estevez L, Wang CM, Zhang JG (2018) Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy 49:538–548

  33. Zhang J-N, Li Q, Ouyang C, Yu X, Ge M, Huang X, Hu E, Ma C, Li S, Xiao R, Yang W, Chu Y, Liu Y, Yu H, Yang X-Q, Huang X, Chen L, Li H (2019) Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat Energy 4(7):594–603

  34. Zhang Z, Chen D, Chang C (2017) Improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials via incorporation of rubidium cations into the original Li sites. RSC Adv 7(81):51721–51728

  35. Zheng Z, Guo XD, Chou SL, Hua WB, Liu HK, Dou SX, Yang XS (2016) Uniform Ni-rich LiNi0.6Co0.2Mn0.2O2 porous microspheres: facile designed synthesis and their improved electrochemical performance. Electrochim Acta 191:401–410

  36. Liu W, Oh P, Liu X, Myeong S, Cho W, Cho J (2015) Countering voltage decay and capacity fading of lithium-rich cathode material at 60 °C by hybrid surface protection layers. Adv Energy Mater 5(13):1500274

  37. Wu L, Tang X, Chen X, Rong Z, Dang W, Wang Y, Li X, Huang L, Zhang Y (2020) Improvement of electrochemical reversibility of the Ni-rich cathode material by gallium doping. J Power Sources 445:227337

  38. Zhao WG, Zheng JM, Zou LF, Jia HP, Liu B, Wang H, Engelhard MH, Wang CM, Xu W, Yang Y, Zhang JG (2018) High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases. Adv Energy Mater 8(19):1800297

  39. Yang J, Xia YY (2016) Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl Mater Inter 8(2):1297–1308

  40. Mu L, Kan WH, Kuai C, Yang Z, Li L, Sun CJ, Sainio S, Avdeev M, Nordlund D, Lin F (2020) Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries. ACS Appl Mater Inter 12(11):12874–12882

  41. Zhang JC, Yang ZZ, Gao R, Gu L, Hu ZB, Liu XF (2017) Suppressing the structure deterioration of Ni-rich LiNi0.8Co0.1Mn0.1O2 through atom-scale interfacial integration of self-forming hierarchical spinel layer with Ni gradient concentration. Acs Appl Mater Inter 9(35):29794–29803

  42. Mu L, Zhang R, Kan WH, Zhang Y, Li L, Kuai C, Zydlewski B, Rahman MM, Sun C-J, Sainio S, Avdeev M, Nordlund D, Xin HL, Lin F (2019) Dopant distribution in Co-free high-energy layered cathode materials. Chem Mater 31(23):9769–9776

    Article  CAS  Google Scholar 

  43. Sun Y, Lv W, Fu P, Song Y, Song D, Shi X, Zhang H, Li C, Zhang L, Wang D (2020) Influence of core and shell components on the Ni-rich layered oxides with core–shell and dual-shell structures. Chem Eng J 400:125821

  44. Tang M, Yang J, Chen N, Zhu S, Wang X, Wang T, Zhang C, Xia Y (2019) Overall structural modification of a layered Ni-rich cathode for enhanced cycling stability and rate capability at high voltage. J Phys Chem A 7(11):6080–6089

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (U1903217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xincun Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Tang, X., Ban, Z. et al. An Mg–Al dual doping strategy to enhance the structural stability and long cycle life of LiNi0.8Co0.1Mn0.1O2 cathode material. Ionics 28, 3101–3112 (2022). https://doi.org/10.1007/s11581-022-04572-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04572-w

Keywords

Navigation