Skip to main content
Log in

Surface oxygen vacancies boosted high rate performance of porous MnO2 anode for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The main obstacles to the development of manganese-based oxide anode materials for lithium-ion batteries (LIBs) are inherently low conductivity and sluggish electrochemical kinetics. In this work, we propose a strategy of introducing oxygen vacancies (Vö) on the surface of nanostructure at room temperature and atmospheric pressure to improve the electrochemical performance of anode materials. Porous MnO2 spheroids with 11.2% Vö are fabricated by a ball milling method using commercial electrolytic MnO2. The as-synthesized MnO2 is composed of 20–30 nm nanoparticles. The optimized MnO2 shows an excellent rate capability of 350 mAh g−1 at 6.4 A g−1 and high specific capacity of 1200 mAh g−1 after 650 cycles under 2 A g−1. The boosted electrochemical performance is attributed to the porous hierarchical structure and the appropriate Vö concentration involved in the MnO2. In addition, the enhanced Li+ diffusion coefficient is demonstrated through the kinetics analysis. The approach provides a facile route via tunable Vö concentration for improving the electrochemical performance of manganese-based oxide anode materials for LIBs.

Highlight

• The porous MnO2 spheroids with tunable Vö concentrate were synthesized by a ball milling method.

• The MnO2 spheroids are composed of 20-30 nm nanoparticles.

• The MnO2 spheroids exhibit an excellent rate performance and cycling stability.

• The ball mill is facile, environmentally friendly, economical for the mass industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cao Z, Chen X, Xing L, Liao Y, Xu M, Li X, Liu X, Li W (2018) Nano-MnO2@TiO2 microspheres: A novel structure and excellent performance as anode of lithium-ion batteries. J Power Sources 379:174–181

    Article  CAS  Google Scholar 

  2. Voskanyan AA, Ho C-K, Chan KY (2019) 3D δ-MnO2 nanostructure with ultralarge mesopores as high-performance lithium-ion battery anode fabricated via colloidal solution combustion synthesis. J Power Sources 421:162–168

    Article  CAS  Google Scholar 

  3. Jy X, Jp T, Z. L, Z. Y, W. XL, S. SJ, (2010) Self-assembled synthesis of hierarchical nanostructured CuO with various-morphologies and their application as anodes for lithium ion batteries. Journal Power Sources 195:313–319

    Article  Google Scholar 

  4. Shen H, Xia X, Yan S, Jiao X, Sun D, Lei W, Hao Q (2020) SnO2-NiFe2O4-graphene nanocomposites as anode materials for lithium ion batteries. Journal of Alloys and Compounds 853:157017

  5. Zhao H, Zeng H, Wu Y, Qi W, Zhang S, Li B, Huang Y (2018) Facile ball-milled synthesis of SnS2-carbon nanocomposites with superior lithium storage. Progress in natural science: Materials International 28:676–682

    Article  CAS  Google Scholar 

  6. L. Zhang (2016) Fabrication of β-MnO2/RGO Composite and Its Electrochemical Properties. International Journal of Electrochemical Science 10815–10826.

  7. Han X, Chen J, Chen M, Zhou W, Zhou X, Wang G, Wong C-P, Liu B, Luo L, Chen S, Shi S (2021) Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes. Energy Storage Materials 39:250–258

    Article  Google Scholar 

  8. Mahmood N, Tang T, Hou Y (2016) Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective. Adv Energy Mater 6:1600374

    Article  Google Scholar 

  9. Zhou W, Chen J, Xu X, Han X, Chen M, Yang L, Hirano SI (2021) Interface Engineering of Silicon and Carbon by Forming a Graded Protective Sheath for High-Capacity and Long-Durable Lithium-Ion Batteries. ACS Appl Mater Interfaces 13:15216–15225

    Article  CAS  Google Scholar 

  10. Gao J, Lowe MA, H.c.D. Abruña, (2011) Spongelike nanosized Mn3O4 as a High-Capacity anode material for rechargeable lithium batteries. Chemistry of Materials 23:3223–3227

  11. Johnson CS, Mansuetto MF, Thackeray MM, Shao‐Horn Y, Hackney SA (2019) Stabilized alpha-MnO2 electrodes for rechargeable 3 V lithium batteries. Journal of The Electrochemical Society 144.

  12. Duan X, Yang J, Gao H, Ma J, Jiao L, Zheng W (2012) Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties. CrystEngComm 14:4196

    Article  CAS  Google Scholar 

  13. Chen X, Cao Z, Xing L, Liao Y, Qiu Y, Li W (2017) Improved Li-storage performance with PEDOT-decorated MnO2 nanoboxes. Nanoscale 9:18467–18473

    Article  CAS  Google Scholar 

  14. Fang X, Lu X, Guo X, Mao Y, Hu Y-S, Wang J, Wang Z, Wu F, Liu H, Chen L (2010) Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem Commun 12:1520–1523

    Article  CAS  Google Scholar 

  15. Chaudhuri H, Karak N (2020) Heterostructured hybrid rGO@α‐MnO2/rGO@δ‐MnO2 nanoflower: an efficient catalyst for aerobic Solvent‐Free N‐Alkylation reactions and energy storage material. ChemCatChem 12:1617–1629

  16. Li G, Li Z, Hou Z, Liu Y, Jiao S (2020) Unraveling superior lithium storage performance of MnO by a three-dimensional structure-memory anode. Electrochimica Acta 363:137184

  17. Gu X, Yue J, Chen L, Liu S, Xu H, Yang J, Qian Y, Zhao X (2015) Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes. Journal of Materials Chemistry A 3:1037–1041

    Article  CAS  Google Scholar 

  18. Lu X, Luo F, Zhang W, Tian Q, Sui Z, Chen J (2021) Enhancing the performance of manganous oxide nanoparticles for lithium storage by in-situ construction of porous carbon embedment. Applied Surface Science 552:149531

  19. Y. Wu, Y. Jiang, J. Shi, L. Gu, Y. Yu (2017) Multichannel porous TiO2 hollow nanofibers with rich oxygen vacancies and high grain boundary density enabling superior sodium storage performance. Small 13.

  20. Tan H, Zhao Z, Zhu WB, Coker EN, Li B, Zheng M, Yu W, Fan H, Sun Z (2014) Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO(3). ACS Appl Mater Interfaces 6:19184–19190

    Article  CAS  Google Scholar 

  21. Peng S, Han X, Li L, Chou S, Ji D, Huang H, Du Y, Liu J, Ramakrishna S (2018) Electronic and Defective Engineering of Electrospun CaMnO3 Nanotubes for Enhanced Oxygen Electrocatalysis in Rechargeable Zinc–Air Batteries. Adv Energy Mater 8:1800612

    Article  Google Scholar 

  22. Xiong T, Yu ZG, Wu H, Du Y, Xie Q, Chen J, Zhang YW, Pennycook SJ, Lee WSV, Xue J (2019) Defect Engineering of Oxygen‐Deficient Manganese Oxide to Achieve High‐Performing Aqueous Zinc Ion Battery. Adv Energy Mater 9:1803815

    Article  Google Scholar 

  23. Kim HS, Cook JB, Lin H, Ko JS, Tolbert SH, Ozolins V, Dunn B (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater 16:454–460

    Article  CAS  Google Scholar 

  24. Chen J, Ding Z, Wang C, Hou H, Zhang Y, Wang C, Zou G, Ji X (2016) Black anatase titania with ultrafast Sodium-Storage performances stimulated by oxygen vacancies. ACS Appl Mater Interfaces 8:9142–9151

  25. Zhao Y, Chang C, Teng F, Zhao Y, Chen G, Shi R, Waterhouse GIN, Huang W, Zhang T (2017) Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv Energy Mater 7:1700005

  26. He W, Zhang T, Jiang J, Chen C, Zhang Y, Liu N, Dou H, Zhang X (2020) Efficient synthesis of N-Doped SiOx/C composite based on the defect-enriched graphite flake for Lithium-Ion battery. ACS Applied Energy Materials 3:4394–4402

  27. Hu R, Ouyang Y, Liang T, Tang X, Yuan B, Liu J, Zhang L, Yang L, Zhu M (2017) Inhibiting grain coarsening and inducing oxygen vacancies: the roles of Mn in achieving a highly reversible conversion reaction and a long life SnO2–Mn–graphite ternary anode. Energy Environ Sci 10:2017–2029

    Article  CAS  Google Scholar 

  28. Zhang Y, Zhang M, Liu Y, Zhu H, Wang L, Liu Y, Xue M, Li B, Tao X (2020) Oxygen vacancy regulated TiN2bO7 compound with enhanced electrochemical performance used as anode material in Li-ion batteries. Electrochimica Acta 330:135299

  29. Jianzhi Zhao ZT, Liang Jing, Chen Jun (2007) Facile Synthesis of Nanoporous γ-MnO Structures and Their-Application in Rechargeable Li-Ion Batteries 2. Crystal Growth & Design 8:2799–2855

  30. Dong C, Wang H, Ren Y, Qu Z (2021) Layer MnO with oxygen vacancy for improved toluene oxidation activity 2. Surfaces and Interfaces 22(100897)

  31. Liu Y, Zhang P, Zhan J, Liu L (2019) Heat treatment of MnCO3: An easy way to obtain efficient and stable MnO2 for humid O3 decomposition. Appl Surf Sci 463:374–385

    Article  CAS  Google Scholar 

  32. Sun Y, Zan L, Zhang Y (2019) Enhanced electrochemical performances of Li2MnO3 cathode materials via adjusting oxygen vacancies content for lithium-ion batteries. Appl Surf Sci 483:270–277

    Article  CAS  Google Scholar 

  33. Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie, X. Lu (2018) Oxygen-Vacancy and Surface Modulation of Ultrathin Nickel Cobaltite Nanosheets as a High-Energy Cathode for Advanced Zn-Ion Batteries. Adv Mater e1802396.

  34. Hu Z, Mi R, Yong X, Liu S, Li D, Li Y, Zhang T (2019) Effect of Crystal Phase of MnO2 Full Papers with Similar Nanorod-Shaped Morphology on the Catalytic Performance of Benzene Combustion. ChemistrySelect 4:473–480

    Article  CAS  Google Scholar 

  35. Chen J, Zhang B, Qian L, Wan H, Yu T, Wei Z, Wang Z, Luo S, Arandiyan H, Liu Y, Sun H (2021) Crystalline Planes templated engineering of defect chemistry in Cobalt(II, III) oxide anodes for lithium ion batteries. Journal of Alloys and Compounds 850(156858)

  36. Du Y, Wang X, Sun J (2020) Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res 14:754–761

    Article  Google Scholar 

  37. Zhai T, Xie S, Yu M, Fang P, Liang C, Lu X, Tong Y (2014) Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8:255–263

    Article  CAS  Google Scholar 

  38. Chen Y, Liang J, Tian Q, Zhang W, Sui Z (2020) Facile construction of clustered FeO/TiO composite for improved lithium storage performance 2 3 2. Synthetic Metals 263(116353)

  39. Li J, Wu P, Lou F, Zhang P, Tang Y, Zhou Y, Lu T (2013) Mesoporous carbon anchored with SnS2 nanosheets as an advanced anode for lithium-ion batteries. Electrochim Acta 111:862–868

    Article  CAS  Google Scholar 

  40. Hou Y, Yuan H, Chen H, Shen J, Li L (2017) The preparation and lithium battery performance of core-shell SiO2@Fe3O4@C composite. Ceram Int 43:11505–11510

    Article  CAS  Google Scholar 

  41. Hu LL, Yang LP, Zhang D, Tao XS, Zeng C, Cao AM, Wan LJ (2017) Designed synthesis of SnO2-C hollow microspheres as an anode material for lithium-ion batteries. Chem Commun (Camb) 53:11189–11192

    Article  CAS  Google Scholar 

  42. Guo CX, Wang M, Chen T, Lou XW, Li CM (2011) A Hierarchically Nanostructured Composite of MnO2/Conjugated Polymer/Graphene for High-Performance Lithium Ion Batteries. Adv Energy Mater 1:736–741

    Article  CAS  Google Scholar 

  43. Zhai X, Mao Z, Zhao G, Rooney D, Zhang N, Sun K (2018) Nanoflake δ-MnO2 deposited on carbon nanotubes-graphene-Ni foam scaffolds as self-standing three-dimensional porous anodes for high-rate-performance lithium-ion batteries. J Power Sources 402:373–380

    Article  CAS  Google Scholar 

  44. Liu L, Shen Z, Zhang X, Ma S (2018) Facile controlled synthesis of MnO2 nanostructures for high-performance anodes in lithium-ion batteries. J Mater Sci: Mater Electron 30:1480–1486

    Google Scholar 

  45. Qian Y, Gu X, Xu H, Yang J (2013) Application of MnO2 nanomaterials in anode materials of lithium ion batteries. Chin Sci Bull 58:3108–3114

    Article  Google Scholar 

  46. Huang Y, He W, Zhang P, Lu X (2018) Nitrogen-doped MnO2 nanorods as cathodes for high-energy Zn-MnO2 batteries. Funct Mater Lett 11:1840006

    Article  CAS  Google Scholar 

  47. Kundu M, Ng CC, Petrovykh DY, Liu L (2013) Nickel foam supported mesoporous MnO2 nanosheet arrays with superior lithium storage performance. Chem Commun 49:8459–8461

    Article  CAS  Google Scholar 

  48. Li Q, Li H, Xia Q, Hu Z, Zhu Y, Yan S, Ge C, Zhang Q, Wang X, Shang X, Fan S, Long Y, Gu L, Miao GX, Yu G, Moodera JS (2021) Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat Mater 20:76–83

    Article  Google Scholar 

  49. Luo H, Wang B, Wang C, Wu F, Jin F, Cong B, Ning Y, Zhou Y, Wang D, Liu H, Dou S (2020) Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Materials 33:390–398

    Article  Google Scholar 

  50. Liu K, Wang J-A, Yang J, Zhao D, Chen P, Man J, Yu X, Wen Z, Sun J (2021) Interstitial and substitutional V5+-doped TiNb2O7 microspheres: A novel doping way to achieve high-performance electrodes. Chemical Engineering Journal 407:127190

  51. Sun T, Nian Q, Zheng S, Yuan X, Tao Z (2020) Water cointercalation for high-energy-density aqueous zinc-ion battery based potassium manganite cathode. Journal of Power Sources 478:228758

Download references

Funding

This research is financially supported by the National Natural Science Foundation of China (Grant No. 21975036) and the Fundamental Research Funds for the Central Universities (No. 3132019328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 335 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, S., Wang, S. et al. Surface oxygen vacancies boosted high rate performance of porous MnO2 anode for lithium-ion batteries. Ionics 28, 139–149 (2022). https://doi.org/10.1007/s11581-021-04303-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04303-7

Keywords

Navigation