Skip to main content
Log in

Nanostructured MnO2 anode materials for advanced lithium ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Owing to the high reversible capacity, low-cost, natural abundance and environmental friendliness, manganese dioxide (MnO2) is recognized as one of the most appropriate and promising anode materials. In this work, nanostructured MnO2 anode materials have been achieved via a hydrothermal method. The crystal structure, morphology and specific surface area of as-prepared MnO2 are characterized by XRD, SEM and BET techniques. As anode materials for lithium-ion batteries, MnO2 samples show high initial discharge capacity and relatively excellent cyclic performance. The electrochemical performance of MnO2 samples is related to crystal structure and surface morphology. Monoclinic structure, it is similar to graphene, which is more convenient for the fast ionic transportation into the bulk of the electrode materials. And porous structure, which can accommodate volume expansion, shorten the electron and lithium ion diffusion pathway and provide a large number of electrochemical reactive sites for lithium ion insertion and extraction during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Wang, Q. Zhang, X. Li, D. Xu, Z. Wang, H. Guo, K. Zhang, Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 6, 19–26 (2014)

    Article  Google Scholar 

  2. J.-Y. Liao, D. Higgins, G. Lui, V. Chabot, X. Xiao, Z. Chen, Multifunctional TiO2–C/MnO2 core–double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett. 13(11), 5467–5473 (2013)

    Article  Google Scholar 

  3. J. Bai, X. Li, G. Liu, Y. Qian, S. Xiong, Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv. Funct. Mater. 24(20), 3012–3020 (2014)

    Article  Google Scholar 

  4. G. Chen, M. Zhou, J. Catanach, T. Liaw, L. Fei, S. Deng, H. Luo, Solvothermal route based in situ carbonization to Fe3O4@C as anode material for lithium ion battery. Nano Energy 8, 126–132 (2014)

    Article  Google Scholar 

  5. Y. Xu, Z. Lin, X. Zhong, B. Papandrea, Y. Huang, X. Duan, Solvated graphene frameworks as high-performance anodes for lithium-ion batteries. Angew. Chem. 54(18), 5345–5350 (2015)

    Article  Google Scholar 

  6. S. Liu, J. Xie, Q. Su, G. Du, S. Zhang, G. Cao, T. Zhu, X. Zhao, Understanding Li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery. Nano Energy 8, 84–94 (2014)

    Article  Google Scholar 

  7. L. Wang, X. He, J. Li, W. Sun, J. Gao, J. Guo, C. Jiang, Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem. Int. Ed. 51(36), 9034–9037 (2012)

    Article  Google Scholar 

  8. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)

    Article  Google Scholar 

  9. Z. Yu, J. Song, M.L. Gordin, R. Yi, D. Tang, D. Wang, Phosphorus–graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv. Sci. 2(1–2), 1–7 (2015)

    Google Scholar 

  10. X. Wu, S. Zhang, H. Fang, Z. Du, R. Lin, Feasibility of utilizing three-dimensional nanoarchitecture to endow metal sulfides with superior Li+ storage capability. J. Power Sources 264, 311–319 (2014)

    Article  Google Scholar 

  11. D. Li, X. Li, S. Wang, Y. Zheng, L. Qiao, D. He, Carbon-wrapped Fe3O4 nanoparticle films grown on nickel foam as binder-free anodes for high-rate and long-life lithium storage. ACS Appl. Mater. Interfaces 6(1), 648–654 (2014)

    Article  Google Scholar 

  12. P. Pal, A.K. Giri, S. Mahanty, A.B. Panda, Morphology-mediated tailoring of the performance of porous nanostructured Mn2O3 as an anode material. CrystEngComm 16(46), 10560–10568 (2014)

    Article  Google Scholar 

  13. Y.C. Dong, R.G. Ma, M.J. Hu, H. Cheng, C.K. Tsang, Q.D. Yang, Y.Y. Li, J.A. Zapien, Scalable synthesis of Fe3O4 nanoparticles anchored on graphene as a high-performance anode for lithium ion batteries. J. Solid State Chem. 201, 330–337 (2013)

    Article  Google Scholar 

  14. X. Gu, J. Yue, L. Li, H. Xue, J. Yang, X. Zhao, General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes. Electrochim. Acta 184, 250–256 (2015)

    Article  Google Scholar 

  15. Y. Jiang, Z.-J. Jiang, B. Chen, Z. Jiang, S. Cheng, H. Rong, J. Huang, M. Liu, Morphology and crystal phase evolution induced performance enhancement of MnO2 grown on reduced graphene oxide for lithium ion batteries. J. Mater. Chem. A 4(7), 2643–2650 (2016)

    Article  Google Scholar 

  16. J. Luo, J. Liu, Z. Zeng, C.F. Ng, L. Ma, H. Zhang, J. Lin, Z. Shen, H.J. Fan, Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13(12), 6136–6143 (2013)

    Article  Google Scholar 

  17. P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5(7), 567–573 (2006)

    Article  Google Scholar 

  18. J. Liu, H.G. Zhang, J. Wang, J. Cho, J.H. Pikul, E.S. Epstein, X. Huang, J. Liu, W.P. King, P.V. Braun, Hydrothermal fabrication of three-dimensional secondary battery anodes. Adv. Mater. 26(41), 7096–7101 (2014)

    Article  Google Scholar 

  19. X. Shen, T. Qian, J. Zhou, N. Xu, T. Yang, C. Yan, Highly flexible full lithium batteries with self-knitted alpha-MnO2 fabric foam. ACS Appl. Mater. Interfaces 7(45), 25298–25305 (2015)

    Article  Google Scholar 

  20. S. Xu, L. Lu, L. Liu, Y.-W. Luo, S.-Q. Wang, J.-W. Liu, G.-H. Li, C.-Q. Feng, Synthesis and electrochemical characteristics of clew-like alpha-MnO2 as cathode material for lithium ion battery. Chin. J. Inorg. Chem. 32(1), 124–130 (2016)

    Google Scholar 

  21. S. Deng, L. Wang, T. Hou, Y. Li, Two-dimensional MnO2 as a better cathode material for lithium ion batteries. J. Phys. Chem. C 119(52), 28783–28788 (2015)

    Article  Google Scholar 

  22. D. Wang, L.-M. Liu, S.-J. Zhao, B.-H. Li, H. Liu, X.-F. Lang, beta-MnO2 as a cathode material for lithium ion batteries from first principles calculations. Phys. Chem. Chem. Phys. 15(23), 9075–9083 (2013)

    Article  Google Scholar 

  23. D. Li, G. Du, J. Wang, Z. Guo, Z. Chen, H. Liu, Microwave-assisted synthesis of flower-like structure epsilon-MnO2 as cathode for lithium ion batteries. J. Chin. Chem. Soc. 59(10), 1211–1215 (2012)

    Article  Google Scholar 

  24. Z. Jia, J. Wang, Y. Wang, B. Li, B. Wang, T. Qi, X. Wang, Interfacial synthesis of delta-MnO2 nano-sheets with a large surface area and their application in electrochemical capacitors. J. Mater. Sci. Technol. 32(2), 147–152 (2016)

    Article  Google Scholar 

  25. X. Zhang, T. Wang, C. Jiang, F. Zhang, W. Li, Y. Tang, Manganese dioxide/cabon nanotubes composite with optimized microstructure via room temperature solution approach for high performance lithium-ion battery anodes. Electrochim. Acta 187, 465–472 (2016)

    Article  Google Scholar 

  26. Y. Wang, P. Ding, C. Wang, Fabrication and lithium storage properties of MnO2 hierarchical hollow cubes. J. Alloy. Compd. 654, 273–279 (2016)

    Article  Google Scholar 

  27. X. Zhou, J. Zhang, Q. Su, J. Shi, Y. Liu, G. Du, Nanoleaf-on-sheet CuO/graphene composites: microwave-assisted assemble and excellent electrochemical performances for lithium ion batteries. Electrochim. Acta 125, 615–621 (2014)

    Article  Google Scholar 

  28. A. Bhaskar, M. Deepa, T.N. Rao, U.V. Varadaraju, Enhanced nanoscale conduction capability of a MoO2/graphene composite for high performance anodes in lithium ion batteries. J. Power Sources 216, 169–178 (2012)

    Article  Google Scholar 

  29. N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9(3), 187–192 (2014)

    Article  Google Scholar 

  30. N. Wang, X. Ma, H. Xu, L. Chen, J. Yue, F. Niu, J. Yang, Y. Qian, Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 6, 193–199 (2014)

    Article  Google Scholar 

  31. H. Ren, R. Yu, J. Wang, Q. Jin, M. Yang, D. Mao, D. Kisailus, H. Zhao, D. Wang, Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 14(11), 6679–6684 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Basic and Frontier Research Program of Chongqing Municipality (cstc2015jcyjA90020), (cstc2014jcyjA10063) and (cstc2013jcyjA50036), Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1501101), (KJ1500323) and (KJ1501116), China Postdoctoral Science Foundation (2015M582499), Postdoctoral special Foundation of Chongqing (Xm2015064) and Project of Chongqing Normal University (14XYY025), and National Natural Science Foundation of China (51502030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Hu, Z., Ruan, H. et al. Nanostructured MnO2 anode materials for advanced lithium ion batteries. J Mater Sci: Mater Electron 27, 11541–11547 (2016). https://doi.org/10.1007/s10854-016-5284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5284-9

Keywords

Navigation