Skip to main content

Advertisement

Log in

Layered Ni0.22V2O5·nH2O as high-performance cathode material for aqueous zinc-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Vanadium-based material has great potential for the cathode of aqueous Zn-ion batteries (ZIBs). Herein, the Ni0.22V2O5·nH2O cathode materials were fabricated by a hydrothermal method. The morphologies and structures of materials were characterized by XRD, SEM, and TEM. The results indicated that the Ni0.22V2O5·nH2O nanobelts appear a typical layered structure, and Ni2+ was embedded in the layer. The electrochemical performance was measured by the galvanostatic charge–discharge test and cyclic voltammetry. The Zn-Ni0.22V2O5 battery represents a capacity of 320.2 mAh g−1 at 0.2 A g−1. The cycle reversible capacity retention rate was 93.9% of the initial capacitance after 2000 cycles at 5 A g−1. Meanwhile, the transmutation of the structure was characterized by in situ and ex situ XRD. The main peak corresponding to the Ni0.22V2O5 electrode at 34.7° slightly shifts to higher 2θ values and then shifts to the initial state during the charge and discharge process. The reversibility of structure improves the electrochemical stability of the Ni0.22V2O5 electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dong Y, Di SL, Zhang FB, Bian X, Wang YY, Xu JZ, Wang LB, Cheng FY, Zhang N (2020) Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries. J Mater Chem A 8:3252–3261. https://doi.org/10.1039/C9TA13068C

    Article  CAS  Google Scholar 

  2. Gu ZY, Guo JZ, Zhao XX, Wang XT, Xie D, Sun ZH, Zhao CD, Liang HJ, Li WH, Wu XL (2021) High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries. Infomat 3:694–704. https://doi.org/10.1002/inf2.12184

    Article  CAS  Google Scholar 

  3. Wang MY, Guo JZ, Wang ZW, Gu ZY, Nie XJ, Yang X, Wu XL (2020) Isostructural and multivalent anion substitution toward improved phosphate cathode materials for sodium-ion batteries. Small 16:1907645. https://doi.org/10.1002/smll.201907645

    Article  CAS  Google Scholar 

  4. Liao KX, Wei HH, Shi PH, Fan JC, Xu QJ, Min YL (2020) An exquisite electrode material using aramid nanofibers with enhanced discharge capacity and catalytic conversion of polysulfides. J Mater Chem A 8:21163–21172. https://doi.org/10.1039/d0ta07851d

    Article  CAS  Google Scholar 

  5. Hao H, Chai Y, Zhang XL, Shi PH, Fan JC, Xu QJ, Min YL (2021) A 2D–3D co-conduction effect in PEO-based all-solid-state batteries for long term cycle stability. J Mater Chem A 9:9214–9227. https://doi.org/10.1039/d0ta10523f

    Article  CAS  Google Scholar 

  6. Lan FY, Zhang HY, Fan JC, Xu QJ, Li HX, Min YL (2021) Electrospun polymer nanofibers with TiO2@NiCo-LDH as efficient polysulfide barriers for wide-temperature-range Li−S batteries. ACS Appl Mater Interfaces 13:2734–2744. https://doi.org/10.1021/acsami.0c19909

    Article  CAS  PubMed  Google Scholar 

  7. Deng SZ, Yuan ZS, Tie ZW, Wang CD, Song L, Niu ZQ (2020) Electrochemically induced metal–organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew Chem 59:22002–22006. https://doi.org/10.1002/anie.202010287

    Article  CAS  Google Scholar 

  8. Ni Q, Jiang H, Sandstrom S, Bai Y, Ren HX, Wu XY, Guo QB, Yu DX, Wu C, Ji XL (2020) A Na3V2(PO4)2O1.6F1.4 cathode of Zn-ion battery enabled by a water-in-bisalt electrolyte. Adv Funct Mater 30:2003511. https://doi.org/10.1002/adfm.202003511

    Article  CAS  Google Scholar 

  9. Chao DL, Zhou WH, Ye C, Zhang QH, Chen YG, Gu L, Davey K, Qiao SZ (2019) An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew Chem 58:7823–7828. https://doi.org/10.1002/anie.201904174

    Article  CAS  Google Scholar 

  10. Niu HJ, Chen YP, Sun RM, Wang AJ, Mei LP, Zhang L, Feng JJ (2020) Prussian blue analogue-derived CoFe nanocrystals wrapped in nitrogen-doped carbon nanocubes for overall water splitting and Zn-air battery. J Power Sources 480:229107. https://doi.org/10.1016/j.jpowsour.2020.229107

    Article  CAS  Google Scholar 

  11. Qiu N, Yang ZM, Wang Y, Zhu YM, Liu W (2020) A high-power and long-life aqueous rechargeable Zn-ion battery based on hierarchically porous sodium vanadate. Chem Commun 56:9174–9177. https://doi.org/10.1039/D0CC02375B

    Article  CAS  Google Scholar 

  12. Zhang Y, Ang EHX, Dinh KN, Rui K, Lin HJ, Zhu JX, Yan QY (2020) Recent advances in vanadium-based cathode materials for rechargeable zinc ion batteries. Mater Chem Front 00:1–3. https://doi.org/10.1039/D0QM00577K

    Article  Google Scholar 

  13. Wang SY, Zhu KJ, Yang LY, Li HZ, Wang SY, Tang SS, Zhang M, Abliz A, Zhao FJ (2020) Synthesis and study of V2O5/rGO nanocomposite as a cathode material for aqueous zinc ion battery. Ionics 26:5607–5615. https://doi.org/10.1007/s11581-020-03705-3

    Article  CAS  Google Scholar 

  14. Dou YF, Liang X, Gao GH, Wu GM (2018) Template-free synthesis of porous V2O5 yolk-shell microspheres as cathode materials for lithium ion batteries. J Alloy Compd 735:109–116. https://doi.org/10.1016/j.jallcom.2017.10.264

    Article  CAS  Google Scholar 

  15. Luo H, Wang B, Wang F, Yang J, Wu FD, Ning Y, Zhou Y, Wang DL, Liu HK, Dou SX (2020) Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano 14:7328–7337. https://doi.org/10.1021/acsnano.0c02658

    Article  CAS  PubMed  Google Scholar 

  16. Sun TJ, Yao XL, Luo YX, Fang MH, Shui M, Shu J, Ren YL (2019) Micron-sized Na0.7MnO2.05 as cathode materials for aqueous rechargeable magnesium-ion batteries. Ionics 25:4805–4815. https://doi.org/10.1007/s11581-019-03057-7

    Article  CAS  Google Scholar 

  17. Bao J, Zhou M, Zeng YQ, Bai LF, Zhang XD, Xu K, Xie Y (2013) Li0.3V2O5 with high lithium diffusion rate: a promising anode material for aqueous lithium-ion batteries with superior rate performance. J Mater Chem A 1:5423–5429. https://doi.org/10.1039/C3TA01548C

    Article  CAS  Google Scholar 

  18. Gao P, Ru Q, Yan HL, Cheng SK, Liu Y, Hou XH, Wei L, Ling FCC (2020) A durable Na0.56V2O5 nanobelt cathode material assisted by hybrid cationic electrolyte for high-performance aqueous zinc-ion batteries. ChemElectroChem 7:283–288. https://doi.org/10.1002/celc.201901851

    Article  CAS  Google Scholar 

  19. Liu YY, Li Q, Ma KX, Yang GZ, Wang CX (2019) Graphene oxide wrapped CuV2O6 nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries. ACS Nano 13:12081–12089. https://doi.org/10.1021/acsnano.9b06484

    Article  CAS  PubMed  Google Scholar 

  20. Cao YH, Fang D, Wang C, Li LC, Xu WL, Luo ZP, Liu XQ, Xiong CX, Liu SQ (2015) Novel aligned sodium vanadate nanowire arrays for high-performance lithium-ion battery electrodes. RSC Adv 5:42955–42960. https://doi.org/10.1039/C5RA01102G

    Article  CAS  Google Scholar 

  21. McNulty D, Collins G, O’Dwyer C (2018) NiVO3 fused oxide nanoparticles—an electrochemically stable intercalation anode material for lithium ion batteries. J Mater Chem A 6:18103–18115. https://doi.org/10.1039/C8TA05327H

    Article  CAS  Google Scholar 

  22. Bin D, Liu Y, Yang BB, Huang JH, Dong XL, Zhang X, Wang YG, Xia YY (2019) Engineering a high-energy-density and long lifespan aqueous zinc battery via ammonium vanadium bronze. ACS Appl Mater Interfaces 11:20796–20803. https://doi.org/10.1021/acsami.9b03159

    Article  CAS  PubMed  Google Scholar 

  23. Yan MY, He P, Chen Y, Wang SY, Wei QL, Zhao KN, Xu X, An QY, Shuang Y, Shao YY, Mueller KT, Mai LQ, Liu J, Yang JH (2018) Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater 30:1703725. https://doi.org/10.1002/adma.201703725

    Article  CAS  Google Scholar 

  24. Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S (1997) Li+ ion insertion in TiO2 (Anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101:7717–7722. https://doi.org/10.1021/jp970490q

    Article  Google Scholar 

  25. Zhang K, Hu Z, Liu X, Tao ZL, Chen J (2015) FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv Mater 27:3305–3309. https://doi.org/10.1002/adma.201500196

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931. https://doi.org/10.1021/jp074464w

    Article  CAS  Google Scholar 

  27. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151. https://doi.org/10.1038/NMAT2612

    Article  CAS  PubMed  Google Scholar 

  28. Xia C, Guo J, Li P, Zhang XX, Alshareef HN (2018) Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem 130:4007–4012. https://doi.org/10.1002/anie.201713291

    Article  CAS  Google Scholar 

  29. Li ZL, Ganapathy S, Xu YL, Zhou Z, Sarilar M, Wagemaker M (2019) Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv Energy Mater 9:1900237. https://doi.org/10.1002/aenm.201900237

    Article  CAS  Google Scholar 

  30. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF (2016) A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy 1:16119. https://doi.org/10.1038/nenergy.2016.119

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51472189), Henan Key Laboratory of Special Protective Materials (No. SZKJJ202006), and ZhongYuan Science and Technology Innovation Leadership Program of China (No. 214200510007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanyao Zhu or Guoquan Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1501 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Luo, W., Yu, D. et al. Layered Ni0.22V2O5·nH2O as high-performance cathode material for aqueous zinc-ion batteries. Ionics 27, 4801–4809 (2021). https://doi.org/10.1007/s11581-021-04253-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04253-0

Keywords

Navigation