Skip to main content

Advertisement

Log in

Micron-sized Na0.7MnO2.05 as cathode materials for aqueous rechargeable magnesium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Aqueous magnesium ion batteries have been identified as potential electrochemical energy storage system due to their similar electrochemical properties to lithium, safety, high abundance, and low cost. Here, micron-sized Na0.7MnO2.05 is prepared by a facile sol-gel method used for cathode material in aqueous magnesium ion batteries. XRD, XPS, SEM, TEM, and EDS were used to test the composition, structure, and morphology of Na0.7MnO2.05. Na0.7MnO2.05 material is electro-chemical active although the intercalation/deintercalation is much difficult for Mg2+. The reversible specific capacities of the Na0.7MnO2.05 cathode material are estimated to be ca. 40, 35, 22, and 13 mAh·g−1 at the current density of 1 C, 2 C, 5 C, and 10 C, respectively. When the current density comes back to 1 C, the charge capacities recover to 40 mAh·g−1. Furthermore, EIS and GITT measured show that the diffusion coefficient of Mg2+ ion in lattice of Na0.7MnO2.05 varies from 2.17 × 10−11 cm2·s−1 to 7.81 × 10−11 cm2·s−1 in charge process and changes from 6.34 × 10−12 cm2·s−1 to 7.14 × 10−11 cm2·s−1 in discharge process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen C, Wang J, Zhao Q, Wang Y, Chen J (2016) Layered Na2Ti3O7/MgNaTi3O7/Mg0.5NaTi3O7 nanoribbons as high-performance anode of rechargeable Mg-ion batteries. ACS Energy Lett 1:1165–1172

    Article  CAS  Google Scholar 

  2. Zheng R, Bi W, Yu H, Xing C, Zhu H, Na P, Liu T, Ye W, Jie S (2018) Improving electrochemical performance by Na, Mg and Al-ion doping of PbLi2Ti6O14 as anode materials for Li-ion batteries. Ceram Int 44:6691–6698

    Article  CAS  Google Scholar 

  3. Qin Y, Wei W, Hai L, Zhang J, Kang F, Li B (2018) Investigation of iron hexacyanoferrate as a high rate cathode for aqueous batteries: sodium-ion batteries and lithium-ion batteries. Electrochim Acta 270:96–103

    Article  Google Scholar 

  4. Wu N, Yang ZZ, Yao HR, Yin YX, Gu L, Guo YG (2015) Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angew Chem Int Ed Eng 127:5849–5853

    Article  Google Scholar 

  5. Wang Y, Jin Y, Xia Y (2012) Recent progress in aqueous lithium-ion batteries. Adv Energy Mater 2:830–840

    Article  CAS  Google Scholar 

  6. Pelosi M, Tillard M, Zitoun D (2013) Ge nanoparticles by direct oxidation of Zintl alloys and their electrochemical behavior as anodes of Li-ion batteries. J Nanopart Res 15:1872

    Article  Google Scholar 

  7. Lyu Z, Yang L, Dan X, Jin Z, Lai H, Jiang Y, Qiang W, Yi L, Wang X, Zheng H (2015) Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Res 8:3535–3543

    Article  CAS  Google Scholar 

  8. Beck F, Rüetschi P (2000) Rechargeable batteries with aqueous electrolytes. Electrochim Acta 45:2467–2482

    Article  CAS  Google Scholar 

  9. Hossain MM, Anari EHB, Aldous L (2013) Electrochemistry of chloride in ambient room temperature ionic liquids: formation of oxychloride species. Electrochem Commun 34:331–334

    Article  CAS  Google Scholar 

  10. Posada JOG, Rennie AJR, Villar SP, Martins VL, Marinaccio J, Barnes A, Glover CF, Worsley DA, Hall PJ (2016) Aqueous batteries as grid scale energy storage solutions. Renew Sust Energ Rev 68:1174

    Article  Google Scholar 

  11. Zhao G, Zou G, Qiu X, Li S, Guo T, Hou H, Ji X (2017) Rose-like N-doped porous carbon for advanced sodium storage. Electrochim Acta 240:24–30

    Article  CAS  Google Scholar 

  12. Liu J, Xu C, Zhen C, Ni S, Shen ZX (2018) Progress in aqueous rechargeable batteries. Green Energy & Environment 3:20–41

    Article  Google Scholar 

  13. Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114:11683–11720

    Article  CAS  Google Scholar 

  14. Canepa P, Sai GG, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G (2017) Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev 117:4287–4341

    Article  CAS  Google Scholar 

  15. Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279

    Article  CAS  Google Scholar 

  16. Wang L, Wang B, Liu GJ, Liu TF, Gao TT, Wang DL (2016) Carbon nanotube decorated NaTi2(PO4)3/C nanocomposite for a high-rate and low-temperature sodium-ion battery anode. RSC Adv 6:70277–70283

    Article  CAS  Google Scholar 

  17. Shao Y, Gu M, Li X, Nie Z, Zuo P, Li G, Liu T, Xiao J, Cheng Y, Wang C (2014) Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett 14:255–260

    Article  CAS  Google Scholar 

  18. Jian L, He S, Liu TL (2017) Tertiary Mg/MgCl2/AlCl3 inorganic Mg2+ electrolytes with unprecedented electrochemical performance for reversible Mg deposition. ACS Energy Lett 2(5)1197–1202

  19. Zhang F, Li W, Xiang X, Sun M (2017) Nanocrystal-assembled porous Na3MgTi(PO4)3 aggregates as highly stable anode for aqueous sodium-ion batteries. Chem Eur J 23:12944–12948

    Article  CAS  Google Scholar 

  20. Qiu W, Yu L, Ao Y, Zhang Z, Li G, Lu X, Tong Y (2017) High-performance flexible quasi-solid-state Zn–MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth. J Mater Chem A 5:14838–14846

    Article  CAS  Google Scholar 

  21. Yao X, Luo Y, Yue L, Li W, Fang M, Miao S, Jie S, Ren Y (2018) The investigation of NaTi2(PO4)3@C/Ag as a high-performance anode material for aqueous rechargeable sodium-ion batteries. Mater Res Bull 104:194–201

  22. Zhang D, Shi WJ, Yan YW, Xu SD, Chen L, Wang XM, Liu SB (2017) Fast and scalable synthesis of durable Na0.44MnO2 cathode material via an oxalate precursor method for Na-ion batteries. Electrochim Acta 258:1035–1043

    Article  CAS  Google Scholar 

  23. Xue J, Xu Q, Liu H, Yuan X, Xia Y (2014) Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 136:19–26

    Article  Google Scholar 

  24. Molenda J, Stokłosa A, Than D (1987) Relation between ionic and electronic defects of Na0.7MnO2 bronze and its electrochemical properties. Solid State Ionics 24:33–38

    Article  CAS  Google Scholar 

  25. Wang Y, Mu L, Liu J, Yang Z, Yu X, Lin G, Hu YS, Hong L, Yang XQ, Chen L, Novel High A (2015) Capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv Energy Mater 5:1501005

  26. Manikandan P, Ramasubramonian D, Shaijumon MM (2016) Layered P2-type Na0.5Ni0.25Mn0.75O2 as a high performance cathode material for sodium-ion batteries. Electrochim Acta 206:199–206

    Article  CAS  Google Scholar 

  27. Hou Y, Tang H, Li B, Chang K, Chang Z, Yuan X-Z, Wang H (2016) Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors. Mater Chem Phys 171:137–144

    Article  CAS  Google Scholar 

  28. Zhao L, Ni J, Wang H, Gao L (2013) Na0.44MnO2–CNT electrodes for non-aqueous sodium batteries. RSC Adv 3:6650–6655

    Article  CAS  Google Scholar 

  29. Zhao J, Chen H, Shi J (2008) Electrochemical and oxygen desorption properties of nanostructured ternary compound NaxMnO2 directly templated from mesoporous SBA-15. Microporous Mesoporous Mater 116:432–438

    Article  CAS  Google Scholar 

  30. Xiao L, Ning Z, Ni J, Gao L (2013) Improved electrochemical performance of sol–gel method prepared Na4Mn9O18 in aqueous hybrid Na-ion supercapacitor. J Solid State Electrochem 17:1939–1944

    Article  Google Scholar 

  31. Wang H, Li Z, Yang W, Yang J, Chen D, Su C, Liu X (2018) Structure modulation and performance optimization of P2-Na0.7Mn0.75Fe0.25-x-yNixCoyO2 through a synergistic substitution of Ni and Co for Fe. Electrochim Acta 277:88–99

    Article  CAS  Google Scholar 

  32. Li L, Wang H, Han W, Guo H, Hoser A, Chai Y, Liu X (2018) Understanding oxygen redox in Cu-doped P2-Na0.67Mn0.8-xFe0.1Co0.1CuXO2 cathode materials for Na-ion batteries. J Electrochem Soc 165(16):A3854–A3861

    Article  CAS  Google Scholar 

  33. Kong W, Wang H, Zhai Y, Sun L, Liu X (2018) Enhancing the rate capability and cycling stability of Na0.67Mn0.7Fe0.2Co0.1O2 through a synergy of Zr4+ Doping and ZrO2 Coating. J Phys Chem C 122(45):25909

    Article  CAS  Google Scholar 

  34. Wang H, Gao R, Li Z, Sun L, Hu Z, Liu X (2018) Different effects of Al substitution for Mn or Fe on the structure and electrochemical properties of Na0.67Mn0.5Fe0.5O2 as a sodium ion battery cathode material. Inorg Chem 57(9):5249–5257

    Article  CAS  Google Scholar 

  35. Parant JP, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P (1971) Sur quelques nouvelles phases de formule NaxMnO2( x ⩽ 1). J Solid State Chem 3:1–11

    Article  CAS  Google Scholar 

  36. Su D, Wang C, Ahn HJ, Wang PG (2013) Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chem Eur J 19:10884–10889

    Article  CAS  Google Scholar 

  37. Xu X, Shu C, Miao S, Xu L, Zheng W, Jie S, Cheng L, Lin F, Ren Y (2014) Li + transportation kinetics of FeF3·0.33H2O/C nanocomposite synthesized by one-step solid state method. Ionics 20:1285–1290

    Article  CAS  Google Scholar 

  38. Xing C, Zhu H, Yu H, Ye W, Zheng R, Liu T, Na P, Miao S, Jie S (2018) K2Nb8O21 nanotubes with superior electrochemical performance towards ultrastable lithium storage. J Mater Chem A 6:8620–8632

Download references

Funding

We gratefully acknowledge the financial support for this work from 973 Fundamental research program from the ministry of science and technology of China (grant number 2010CB635116), NSFC project 21173190, Ningbo Science and Technology Bureau Project 2017A610023, Zhejiang Provincial Natural Science Foundation of China Y13B010020 and K.C.Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Shui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 643 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Yao, X., Luo, Y. et al. Micron-sized Na0.7MnO2.05 as cathode materials for aqueous rechargeable magnesium-ion batteries. Ionics 25, 4805–4815 (2019). https://doi.org/10.1007/s11581-019-03057-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03057-7

Keywords

Navigation