Skip to main content
Log in

Engineering of CuO/ZrO2 nanocomposite-based electrochemical sensor for the selective detection of hydrogen peroxide

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

For the first time, non-enzymatic hydrogen peroxide (H2O2) electrochemical sensor based on copper oxide/zirconia nanocomposite (CuO/ZrO2 nanocomposite) has been designed and constructed. In the present study, simple hydrothermal methods were used to synthesize the materials followed by calcination process. The structural and morphological properties of the prepared nanocomposites were investigated by using various analytical and spectroscopic techniques, namely, TEM, FE-SEM-EDAX, XPS, XRD, and BET surface area. In addition, the electrochemical properties were explored by using electrochemical tool such as cyclic voltammetry and amperometric techniques. The obtained results clearly demonstrated that the prepared material hold excellent-crystallinity, well-defined honeycomb-like framework and exhibited an improved analytical performance in the form of current towards the detection of H2O2 due to the presence of ZrO2 which could prevent the agglomeration of duel oxidation state of copper oxide nanoparticles and improved the electrocatalytic performance of copper oxide. Furthermore, the ZrO2’s ionic electrical conductivity can aid faster electron transfer at the modified electrode. The proposed electrochemical sensor exhibited a wide working linear range of 50–800 µM, good sensitivity of 0.28 μAμM−1 cm−2, and lower detection limit 14.5 µM (S/N = 3). Also in the presence of biologically co-interfering compounds such as glucose, dopamine, ascorbic acid, and uric acid, the proposed sensor had an exceptional selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Di Marzo N, Chisci E, Giovannoni R (2018) The role of hydrogen peroxide in redox-dependent signaling: homeostatic and pathological responses in mammalian cells. Cells 7(10):156. https://doi.org/10.3390/cells7100156

    Article  CAS  PubMed Central  Google Scholar 

  2. Balu S, Palanisamy S, Velusamy V, Yang TCK (2019) Sonochemical synthesis of gum guar biopolymer stabilized copper oxide on exfoliated graphite: application for enhanced electrochemical detection of H2O2 in milk and pharmaceutical samples. Ultrason Sonochem 56:254–263. https://doi.org/10.1016/j.ultsonch.2019.04.023

    Article  CAS  PubMed  Google Scholar 

  3. Han L, Tang L, Deng D, He H, Zhou M, Luo L (2019) A novel hydrogen peroxide sensor based on electrodeposited copper/cuprous oxide nanocomposites. Analyst 144(2):685–690. https://doi.org/10.1039/C8AN01876F

    Article  CAS  PubMed  Google Scholar 

  4. Han Y, Zheng J, Dong S (2013) A novel nonenzymatic hydrogen peroxide sensor based on Ag–MnO2–MWCNTs nanocomposites. Electrochim Acta 90:35–43. https://doi.org/10.1016/j.electacta.2012.11.117

    Article  CAS  Google Scholar 

  5. Ghanei-Motlagh M, Taher MA, Fayazi M, Baghayeri M, Hosseinifar A (2019) Non-enzymatic amperometric sensing of hydrogen peroxide based on vanadium pentoxide nanostructures. J Electrochem Soc 166(6):B367–B372. https://doi.org/10.1149/2.0521906jes

    Article  CAS  Google Scholar 

  6. Hassan M, Jiang Y, Bo X, Zhou M (2018) Sensitive nonenzymatic detection of hydrogen peroxide at nitrogen-doped graphene supported-CoFe nanoparticles. Talanta 188:339–348. https://doi.org/10.1016/j.talanta.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  7. Ray C, Pal T (2017) Retracted article: recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. Journal of Materials Chemistry A 5(20):9465–9487. https://doi.org/10.1039/C7TA02116J

    Article  CAS  Google Scholar 

  8. Zhou W, Wachs IE, Kiely CJ (2012) Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy. Curr Opin Solid State Mater Sci 16(1):10–22. https://doi.org/10.1016/j.cossms.2011.06.001

    Article  CAS  Google Scholar 

  9. Butwong N, Zhou L, Ng-eontae W, Burakham R, Moore E, Srijaranai S, Luong JHT, Glennon JD (2014) A sensitive nonenzymatic hydrogen peroxide sensor using cadmium oxide nanoparticles/multiwall carbon nanotube modified glassy carbon electrode. J Electroanal Chem 717–718:41–46. https://doi.org/10.1016/j.jelechem.2013.12.028

    Article  CAS  Google Scholar 

  10. He H (2020) 2 - Metal oxide semiconductors and conductors In Cui Z, Korotcenkov G (eds) Solution Processed Metal Oxide Thin Films for Electronic Applications. Elsevier, pp 7–30. https://doi.org/10.1016/B978-0-12-814930-0.00002-5

  11. Xu F, Deng M, Li G, Chen S, Wang L (2013) Electrochemical behavior of cuprous oxide–reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing. Electrochim Acta 88:59–65. https://doi.org/10.1016/j.electacta.2012.10.070

    Article  CAS  Google Scholar 

  12. Gawande MB, Goswami A, Felpin F-X, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116(6):3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482

    Article  CAS  PubMed  Google Scholar 

  13. Le W-Z, Liu Y-Q (2009) Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization. Sens Actuators, B Chem 141:147–153. https://doi.org/10.1016/j.snb.2009.05.037

    Article  CAS  Google Scholar 

  14. Shim JH, Chao C-C, Huang H, Prinz FB (2007) Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chem Mater 19(15):3850–3854. https://doi.org/10.1021/cm070913t

    Article  CAS  Google Scholar 

  15. Wang H, Shi S, Wang Y, Li C-s, Sun J (2010) CaF2-doped ZrO2: A base catalyst for synthesis of dimethyl carbonate. Journal of Shanghai University (English Edition) 14(4):281–285. https://doi.org/10.1007/s11741-010-0644-1

    Article  CAS  Google Scholar 

  16. Chikere CO, Faisal NH, Kong-Thoo-Lin P, Fernandez C (2020) Interaction between amorphous zirconia nanoparticles and graphite: electrochemical applications for gallic acid sensing using carbon paste electrodes in wine. Nanomaterials 10(3):537

    Article  CAS  Google Scholar 

  17. Wang H, Su Y, Kim H, Yong D, Wang L, Han X (2015) A highly efficient ZrO2 nanoparticle based electrochemical sensor for the detection of organophosphorus pesticides. Chin J Chem 33(10):1135–1139. https://doi.org/10.1002/cjoc.201500460

    Article  CAS  Google Scholar 

  18. Parashuram L, Sreenivasa S, Akshatha S, Udayakumar V, Sandeep kumar S, (2019) A non-enzymatic electrochemical sensor based on ZrO2 Cu(I) nanosphere modified carbon paste electrode for electro-catalytic oxidative detection of glucose in raw Citrus aurantium var. sinensis. Food Chemistry 300:125178. https://doi.org/10.1016/j.foodchem.2019.125178

    Article  CAS  PubMed  Google Scholar 

  19. Jerez-Masaquiza MD, Fernández L, González G, Montero-Jiménez M, Espinoza-Montero PJ (2020) Electrochemical sensor based on Prussian blue electrochemically deposited at ZrO2 doped carbon nanotubes glassy carbon modified electrode. Nanomaterials 10(7):1328

    Article  CAS  Google Scholar 

  20. Vinoth Kumar J, Karthik R, Chen S-M, Raja N, Selvam V, Muthuraj V (2017) Evaluation of a new electrochemical sensor for selective detection of non-enzymatic hydrogen peroxide based on hierarchical nanostructures of zirconium molybdate. J Colloid Interface Sci 500:44–53. https://doi.org/10.1016/j.jcis.2017.03.113

    Article  CAS  PubMed  Google Scholar 

  21. Teymourian H, Salimi A, Firoozi S, Korani A, Soltanian S (2014) One-pot hydrothermal synthesis of zirconium dioxide nanoparticles decorated reduced graphene oxide composite as high performance electrochemical sensing and biosensing platform. Electrochim Acta 143:196–206. https://doi.org/10.1016/j.electacta.2014.08.007

    Article  CAS  Google Scholar 

  22. Li P-H, Song Z-Y, Yang M, Chen S-H, Xiao X-Y, Duan W, Li L-N, Huang X-J (2020) Electrons in oxygen vacancies and oxygen atoms activated by Ce3+/Ce4+ promote high-sensitive electrochemical detection of Pb (II) over Ce-doped α-MoO3 catalysts. Anal Chem 92(24):16089–16096

    Article  CAS  Google Scholar 

  23. Gangadharappa MS, Raghu MS, Kumar S, Parashuram L, Kumar VU (2021) Elaeocarpus Ganitrus structured mesoporous hybrid Mn3+/4+ loaded zirconia self assembly as a versatile amperometric probe for the electrochemical detection of nitrite. ChemistrySelect 6(4):880–887. https://doi.org/10.1002/slct.202004543

    Article  CAS  Google Scholar 

  24. Outokesh M, Hosseinpour M, Ahmadi SJ, Mousavand T, Sadjadi S, Soltanian W (2011) Hydrothermal synthesis of CuO nanoparticles: study on effects of operational conditions on yield, purity, and size of the nanoparticles. Ind Eng Chem Res 50(6):3540–3554. https://doi.org/10.1021/ie1017089

    Article  CAS  Google Scholar 

  25. Akgul FA, Akgul G, Yildirim N, Unalan HE, Turan R (2014) Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater Chem Phys 147(3):987–995. https://doi.org/10.1016/j.matchemphys.2014.06.047

    Article  CAS  Google Scholar 

  26. Sagadevan S, Podder J, Das I (2016) Hydrothermal synthesis of zirconium oxide nanoparticles and its characterization. J Mater Sci: Mater Electron 27(6):5622–5627. https://doi.org/10.1007/s10854-016-4469-6

    Article  CAS  Google Scholar 

  27. Arjun A, Dharr A, Raguram T, Rajni KS (2020) Study of copper doped zirconium dioxide nanoparticles synthesized via sol–gel technique for photocatalytic applications. J Inorg Organomet Polym Mater 30(12):4989–4998. https://doi.org/10.1007/s10904-020-01616-4

    Article  CAS  Google Scholar 

  28. Wang Y, Caruso RA (2002) Preparation and characterization of CuO–ZrO2 nanopowders. J Mater Chem 12(5):1442–1445. https://doi.org/10.1039/B110844A

    Article  CAS  Google Scholar 

  29. Liu W, Flytzanistephanopoulos M (1995) Total oxidation of carbon-monoxide and methane over transition metal fluorite oxide composite catalysts: II. Catalyst characterization and reaction-kinetics. Journal of Catalysis 153(2):317–332. https://doi.org/10.1006/jcat.1995.1133

    Article  CAS  Google Scholar 

  30. Scherrer P (1912) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Zsigmondy R (ed) Kolloidchemie Ein Lehrbuch. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 387–409. https://doi.org/10.1007/978-3-662-33915-2_7

  31. Aksoy Akgul F, Akgul G, Yildirim N, Unalan H, Turan R (2015) Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films.

  32. Chawla SK, Sankarraman N, Payer JH (1992) Diagnostic spectra for XPS analysis of Cu O S H compounds. J Electron Spectrosc Relat Phenom 61(1):1–18. https://doi.org/10.1016/0368-2048(92)80047-C

    Article  CAS  Google Scholar 

  33. Mondal P, Sinha A, Salam N, Roy AS, Jana NR, Islam SM (2013) Enhanced catalytic performance by copper nanoparticle–graphene based composite. RSC Adv 3(16):5615–5623. https://doi.org/10.1039/C3RA23280H

    Article  CAS  Google Scholar 

  34. Sarma DD, Rao CNR (1980) XPES studies of oxides of second- and third-row transition metals including rare earths. J Electron Spectrosc Relat Phenom 20(1):25–45. https://doi.org/10.1016/0368-2048(80)85003-1

    Article  CAS  Google Scholar 

  35. García-Miranda Ferrari A, Foster CW, Kelly PJ, Brownson DAC, Banks CE (2018) Determination of the electrochemical area of screen-printed electrochemical sensing platforms. Biosensors 8(2):53

    Article  Google Scholar 

  36. Le W-Z, Liu Y-Q (2009) Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization. Sens Actuators, B Chem 141(1):147–153. https://doi.org/10.1016/j.snb.2009.05.037

    Article  CAS  Google Scholar 

  37. Gao P, Gong Y, Mellott NP, Liu D (2015) Non-enzymatic amperometric detection of hydrogen peroxide using grass-like copper oxide nanostructures calcined in nitrogen atmosphere. Electrochim Acta 173:31–39. https://doi.org/10.1016/j.electacta.2015.05.037

    Article  CAS  Google Scholar 

  38. Zhang K, Zhang N, Cai H, Wang C (2012) A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers. Microchim Acta 176(1):137–142. https://doi.org/10.1007/s00604-011-0708-y

    Article  CAS  Google Scholar 

  39. Gao P, Liu D (2015) Facile synthesis of copper oxide nanostructures and their application in non-enzymatic hydrogen peroxide sensing. Sens Actuators, B Chem 208:346–354. https://doi.org/10.1016/j.snb.2014.11.051

    Article  CAS  Google Scholar 

  40. Daemi S, Ghasemi S, Akbar Ashkarran A (2019) Electrospun CuO-ZnO nanohybrid: Tuning the nanostructure for improved amperometric detection of hydrogen peroxide as a non-enzymatic sensor. J Colloid Interface Sci 550:180–189. https://doi.org/10.1016/j.jcis.2019.04.091

    Article  CAS  PubMed  Google Scholar 

  41. Chakraborty P, Dhar S, Debnath K, Mondal SP (2019) Glucose and hydrogen peroxide dual-mode electrochemical sensing using hydrothermally grown CuO nanorods. J Electroanal Chem 833:213–220. https://doi.org/10.1016/j.jelechem.2018.11.060

    Article  CAS  Google Scholar 

  42. Juang F-R, Chern W-C (2019) Controlled synthesis of cuprous oxide nanoparticles with different morphologies for nonenzymatic hydrogen peroxide sensing applications. J Electrochem Soc 166(4):B200–B204. https://doi.org/10.1149/2.0391904jes

    Article  CAS  Google Scholar 

  43. Liu T, Guo Y, Zhang Z, Miao Z, Zhang X, Su Z (2019) Fabrication of hollow CuO/PANI hybrid nanofibers for non-enzymatic electrochemical detection of H2O2 and glucose. Sens Actuators, B Chem 286:370–376. https://doi.org/10.1016/j.snb.2019.02.006

    Article  CAS  Google Scholar 

  44. Welch CM, Banks CE, Simm AO, Compton RG (2005) Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem 382(1):12–21. https://doi.org/10.1007/s00216-005-3205-5

    Article  CAS  PubMed  Google Scholar 

  45. Ma J, Chen G, Bai W, Zheng J (2020) Amplified electrochemical hydrogen peroxide sensing based on Cu-porphyrin metal–organic framework nanofilm and G-quadruplex-hemin DNAzyme. ACS Appl Mater Interfaces 12(52):58105–58112. https://doi.org/10.1021/acsami.0c09254

    Article  CAS  PubMed  Google Scholar 

  46. Šljukić B, Banks CE, Crossley A, Compton RG (2006) Iron(III) Oxide graphite composite electrodes: application to the electroanalytical detection of hydrazine and hydrogen peroxide. Electroanalysis 18(18):1757–1762. https://doi.org/10.1002/elan.200603605

    Article  CAS  Google Scholar 

  47. Langley CE, Scaron LB, Banks CE, Compton RG (2007) Manganese dioxide graphite composite electrodes: application to the electroanalysis of hydrogen peroxide, ascorbic acid and nitrite. Anal Sci 23(2):165–170. https://doi.org/10.2116/analsci.23.165

    Article  PubMed  Google Scholar 

  48. Baccarin M, Janegitz BC, Berté R, Vicentini FC, Banks CE, Fatibello-Filho O, Zucolotto V (2016) Direct electrochemistry of hemoglobin and biosensing for hydrogen peroxide using a film containing silver nanoparticles and poly(amidoamine) dendrimer. Mater Sci Eng, C 58:97–102. https://doi.org/10.1016/j.msec.2015.08.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Siddaganga Institute of Technology, Tumkur, for extensive support for the research. Also the authors acknowledge for providing characterization facilities at Siddaganga Institute of Technology, Tumkur, Karnataka.

Funding

This work was supported by the Department of Science and Technology through Women Scientist Scheme-A (WOS-A) Ref. No. SR/WOS-A/CS-153/2018 and F.No. DST/SSTP/Karnataka/72/2017–18,

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velu Udayakumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30.9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

G, M.S., Adarakatti, P.S. & Udayakumar, V. Engineering of CuO/ZrO2 nanocomposite-based electrochemical sensor for the selective detection of hydrogen peroxide. Ionics 27, 5309–5322 (2021). https://doi.org/10.1007/s11581-021-04243-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04243-2

Keywords

Navigation