Skip to main content

Advertisement

Log in

Enhancing high cycle stability of Ni-rich LiNi0.94Co0.04Al0.02O2 layered cathode material

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The layered lattice structure of the nickel-rich LiNi0.94Co0.04Al0.02O2 (NCA) cathode material has the advantages of high energy density and low cost. Unfortunately, high nickel materials’ application is limited due to the fast decay of capacity. Doping and coating are effective methods to enhance cycle stability. In this study, the effects of Ti doping on the electrochemical performances of NCA are systematically investigated. Ni0.94Co0.04Al0.02(OH)2 and TiO2 are directly mixed, and after sintering, Ti4+ ions diffused uniformly in the LiNi0.94Co0.04Al0.02O2 cathode particles. Besides, (Ni0.4Co0.2Mn0.4)0.78Ti0.22(OH)2 is coated onto the surface of Ni0.94Co0.04Al0.02(OH)2 precursor particles with a facile co-precipitation method, and after sintering, Ti4+ ions also diffused uniformly. The cathodes were cycled in the voltage range of 2.8–4.5 V at 1 C. As a result, the discharge capacity of Ni0.94Co0.04Al0.02(OH)2 changes from 201.4 to 119.8 mAh g−1, and the battery capacity decayed rapidly within 200 cycles. Although the initial discharge capacity of the doped and covered specimens was not significantly dissimilar from the original precursor specimens, the capacity has only dropped by 20% after 200 charges and discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657

    CAS  PubMed  Google Scholar 

  2. Yoon CS, Park K-J, Kim U-H et al (2017) High-energy Ni-rich Li[NixCoyM1–x–y]O2 cathodes via compositional partitioning for next-generation electric vehicles. Chem Mater 29:10436–10445

    Article  CAS  Google Scholar 

  3. Kim J, Lee H, Cha H et al (2018) Prospect and reality of Ni-Rich cathode for commercialization. Adv Energy Mater 8:1702028

    Article  Google Scholar 

  4. Zuo Y, Li B, Jiang N et al (2018) A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater 30:1707255

    Article  Google Scholar 

  5. Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better… a review of 5 Volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939

    Article  CAS  Google Scholar 

  6. Xia S, Li F, Cheng F et al (2018) Synthesis of spherical fluorine modified gradient Li-ion battery cathode material LiNi0.80Co0.15Al0.05O2 by simple solid phase method. J Electrochem Soc 165:A1019

    Article  CAS  Google Scholar 

  7. Zhu L, Liu Y, Wu W et al (2015) Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries. J Mater Chem A 3:15156–15162

    Article  CAS  Google Scholar 

  8. Ge W, Wang H, Xie Z et al (2017) Amorphous 0.035Li2O-BPO4 coating for enhanced electrochemical performance of Li [Ni0.5Co0.2Mn0.3]O2 cathode material. J Alloys Compd 693:606–614

    Article  CAS  Google Scholar 

  9. Zhang Y, Wang C-Y (2009) Cycle-life characterization of automotive lithium-ion batteries with LiNiO2 cathode. J Electrochem Soc 156:A527

    Article  CAS  Google Scholar 

  10. Huang B, Wang M, Zhao Z et al (2019) Effects of the strong oxidant treatment of precursor on the electrochemical properties of LiNi0.8Mn0.1Co0.1O2 for lithium-ion batteries. J Alloys Compd 810:151800

    Article  CAS  Google Scholar 

  11. Eom J, Kim MG, Cho J (2008) Storage characteristics of LiNi0.8Co0.1+xMn0.1xO2 (x=0, 0.03, and 0.06) cathode materials for lithium batteries. J Electrochem Soc 155:A239

    Article  CAS  Google Scholar 

  12. Kim Y, Cho J (2007) Lithium-reactive Co3(PO4)2 nanoparticle coating on high-capacity LiNi0.8Co0.16Al0.04O2 cathode material for lithium rechargeable batteries. J Electrochem Soc 154:A495

    Article  CAS  Google Scholar 

  13. Li D, Peng Z, Guo W, Zhou Y (2008) Synthesis and characterization of LiNi0.9Co0.1O2 for lithium batteries by a novel method. J Alloys Compd 457:L1–L5

    Article  CAS  Google Scholar 

  14. Shi X, Wang C, Ma X, Sun J (2009) Synthesis and electrochemical properties of LiNi0.9Co0.1O2 cathode material for lithium secondary battery. Mater Chem Phys 113:780–783

    Article  CAS  Google Scholar 

  15. Jiang D, Zhao L, Shao Y, Wang D (2015) Preparation and characterization of layered LiNi0.9Co0.05Mn0.025Mg0.025O2 cathode material by a sol–gel method for lithium-ion batteries. RSC Adv 5:40779–40784

    Article  CAS  Google Scholar 

  16. Cho Y, Lee Y-S, Park S-A et al (2010) LiNi0.8Co0.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05(OH)2 precursors. Electrochim Acta 56:333–339

    Article  CAS  Google Scholar 

  17. Zhou P, Zhang Z, Meng H et al (2016) SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries. Nanoscale 8:19263–19269

    Article  CAS  PubMed  Google Scholar 

  18. Liu BS, Sui XL, Zhang SH et al (2018) Investigation on electrochemical performance of LiNi0.8Co0.15Al0.05O2 coated by heterogeneous layer of TiO2. J Alloys Compd 739:961–971

    Article  CAS  Google Scholar 

  19. Kim J-Y, Kim SH, Kim DH et al (2017) Electronic structural studies on the improved thermal stability of Li(Ni0.8Co0.15Al0.05)O2 by ZrO2 coating for lithium ion batteries. J Appl Electrochem 47:565–572

    Article  CAS  Google Scholar 

  20. Huang YQ, Huang YH, Hu XL (2017) Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4. Electrochim Acta 231:294–299

    Article  CAS  Google Scholar 

  21. Jamil S, Ran Q, Yang L et al (2021) Improved high-voltage performance of LiNi0.87Co0.1Al0.03O2 by Li+-conductor coating. Chem Eng J 407:126442

    Article  CAS  Google Scholar 

  22. Shang S, Wang X, Jiang F (2021) Effects of Li2O2 on structure and electrochemical properties of LiNi0.88Co0.09Al0.03O2 cathode materials. J Alloys Compd 860:158262

    Article  CAS  Google Scholar 

  23. Feng D, Liu Q, Zeng T (2021) Boosting cyclability performance of the LiNi0.8Co0.15Al0.05O2 cathode by a polyacrylonitrile-induced conductive carbon surface coating. Ceramics International 47:12706–12715

  24. Xu Y, Li X, Wang Z et al (2015) Structure and electrochemical performance of TiO2-coated LiNi0.80Co0.15Al0.05O2 cathode material. Materials Letters 143:151–154

    Article  CAS  Google Scholar 

  25. He H, Dong J, Zhang D, Chang C (2020) Effect of Nb doping on the behavior of NCA cathode: Enhanced electrochemical performances from improved lattice stability towards 4.5 V application. Ceram Int 46:24564–24574

    Article  CAS  Google Scholar 

  26. Chen T, Li X, Wang H et al (2018) The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material. J Power Sources 374:1–11

    Article  CAS  Google Scholar 

  27. He S, Wei A, Li W et al (2019) An in-depth analysis detailing the structural and electrochemical properties within Brmodified LiNi0.815Co0.15A0.035O2 (NCA) cathode material. Electrochim Acta 318:362–373

    Article  CAS  Google Scholar 

  28. Yang H, Wu HH, Ge M et al (2019) Simultaneously dual modification of ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv Func Mater 29:1808825

    Article  Google Scholar 

  29. Nam GW, Park N-Y, Park K-J et al (2019) Capacity fading of Ni-rich NCA cathodes: effect of microcracking extent. ACS Energy Lett 4:2995–3001

    Article  CAS  Google Scholar 

  30. Park KJ, Choi MJ, Maglia F et al (2018) High‐capacity concentration gradient Li[Ni0.865Co0.120Al0.015]O2 cathode for lithium‐ion batteries. Adv Energy Mater 8:1703612

    Article  Google Scholar 

  31. Kim UH, Ryu HH, Kim JH et al (2019) Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles. Adv Energy Mater 9:1803902

    Article  Google Scholar 

  32. Qian K, Huang B, Liu Y et al (2019) Increase and discretization of the energy barrier for individual LiNixCoyMnyO2 (x+2y=1) particles with the growth of a Li2CO3 surface film. J Mater Chem A 7:12723–12731

    Article  CAS  Google Scholar 

  33. Uygur CS, Aydınol MK (2021) Effect of calcium or yttrium doping on cation ordering and electrochemical performance of Li(Ni0.80-xCo0.15Al0.05Mx)O2 (M= Ca,Y) as a Li-ion battery cathode. Materials Science and Engineering: B 264:114925

    Article  Google Scholar 

  34. Yu H, Li Y, Hu Y et al (2019) Concurrently coating and doping high-valence vanadium in Ni-rich lithiated oxides for high-rate and stable Li-ion batteries. Ind Eng Chem Res 58:4108–4115

  35. Chen Z, Kim GT, Bresser D et al (2018) MnPO4-Coated Li-NCM: MnPO4-coated Li(Ni0.4Co0.2Mn0.4)O2 for Lithium(-Ion) batteries with outstanding cycling stability and enhanced lithiation kinetics. Adv Energy Mater 8:1870123

  36. Wu F, Liu N, Chen L et al (2019) Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 59:50–57

  37. Shan W, Huang S, Zhang H, Hou X (2020) Surface coating for high-nickel cathode materials to achieve excellent cycle performance at elevated temperatures. J Alloys Compd 862:158022

  38. Ryu H-H, Park K-J, Yoon CS, Sun Y-K (2018) Capacity fading of Ni-rich Li[NixCoyM1–x–y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater 30:1155–1163

  39. Yoon CS, Jun DW, Myung ST, Sun YK (2017) Structural stability of LiNiO2 cycled above 4.2 V. ACS Energy Lett 2:1150–1155

  40. Kondrakov AO, Schmidt A, Xu J et al (2017) Anisotropic lattice strain and mechanical degradation of high and low nickel NCM cathode materials for Li-ion batteries. J Phys Chem C 121:3286–3294

    Article  CAS  Google Scholar 

  41. Ryu HH, Park NY, Seo JH et al (2020) A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries. Mater Today 36:73–82. https://doi.org/10.1016/j.mattod.2020.01.019

    Article  CAS  Google Scholar 

  42. Chen J, Wang XL, Jin EM et al (2021) Optimization of B2O3 coating process for NCA cathodes to achieve long-term stability for application in lithium ion batteries. Energy 222:119913

    Article  CAS  Google Scholar 

  43. Takanashi S, Abe Y (2017) Improvement of the electrochemical performance of an NCA positive-electrode material of lithium ion battery by forming an Al-rich surface layer. Ceram Int 43:9246–9252

    Article  CAS  Google Scholar 

  44. Cheng X, Liu M, Yin J et al (2020) Regulating surface and grain-boundary structures of Ni-Rich layered cathodes for ultrahigh cycle stability. Small 16:1906433

    Article  CAS  Google Scholar 

  45. Hu X, Qiang W, Huang B (2017) Surface layer design of cathode materials based on mechanical stability towards long cycle life for lithium secondary batteries. Energy Storage Mater 8:141–146

    Article  Google Scholar 

  46. Han Y, Cheng X, Zhao G et al (2021) Effects of Al doping on the electrochemical performances of LiNi0.83Co0.12Mn0.05O2 prepared by coprecipitation. Ceram Int 47:12104–12110

Download references

Funding

This work is financially supported by the Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0651) and the Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB (grant no. BK19BE025, BK20BE012), and Research Project on Characteristic Innovation of University Teachers in Foshan City (grant no. 2020XCC04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Wang, Bingbing Zhao or Bingxin Huang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Cheng, X., Wang, C. et al. Enhancing high cycle stability of Ni-rich LiNi0.94Co0.04Al0.02O2 layered cathode material. Ionics 27, 4619–4628 (2021). https://doi.org/10.1007/s11581-021-04240-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04240-5

Keywords

Navigation