Skip to main content

Advertisement

Log in

Optimize the surface of the Li-rich cathode materials with lithium phosphate and polyaniline to improve the electrochemical performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li-Rich cathode materials are a very promising cathode material for lithium-ion batteries due to its high energy density and low cost, and being environmentally friendly. However, there will be some defects such as lower initial coulomb efficiency, poor cycle stability, and poor rate performance that make the material difficult to commercialize so far. In this paper, we use Li1.2Mn0.54Ni0.13Co0.13O2 (LMNC) as the raw cathode material, lithium phosphate (Li3PO4) and polyaniline (PANI) are constructed as surface modifiers of LMNC, and the electrochemical performance of the modified material has been significantly improved. Compared with the raw material, the initial coulomb efficiency is increased from 64.5 to 82.3%. After 100 cycles at 1C, the capacity retention rate reaches 94.1% (raw material is 81.3%) and the specific capacity can reach 109.57 mAh g−1 under the high current density of 5C (raw material is 73.27 mAh g−1). As a result, the hybrid coating layer not only can be used as a protective layer to protect electrode materials from HF corrosion, but also has excellent electrical conductivity to promote the exchange of ions and electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  PubMed  Google Scholar 

  2. Winter M, Barnett B, Xu K (2018) Before Li ion batteries. Chem Rev 118(23):11433–11456

    Article  CAS  PubMed  Google Scholar 

  3. Cho TH, Shiosaki Y, Noguchi H (2006) Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method. J Power Sources 159(2):1322–1327

    Article  CAS  Google Scholar 

  4. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954

    Article  CAS  Google Scholar 

  5. Santiago EI, Andrade AVC, Paiva-Santos CO, Bulhes LOS (2003) Structural and electrochemical properties of LiCoO2 prepared by combustion synthesis. Solid State Ionics Diffus React 158(1–2):91–102

    Article  CAS  Google Scholar 

  6. Yao W, Fei L, Shahbazian-Yassar R (2016) Localized mechanical stress induced ionic redistribution in a layered LiCoO2 cathode. ACS Appl Mater Interfaces 8(43):29391–29399

    Article  CAS  PubMed  Google Scholar 

  7. Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB (2010) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4(2):269–284

    Article  Google Scholar 

  8. Lin B, Wen Z, Han J, Wu X (2008) Electrochemical properties of carbon-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries. Solid State Ionics 179(27–32):1750–1753

    Article  CAS  Google Scholar 

  9. Saravanan K, Reddy MV, Balaya P, Gong H, Vittal JJ (2009) Storage performance of LiFePO4 nanoplates. J Mater Chem 19(5):605–610

    Article  CAS  Google Scholar 

  10. Yamada A, Chung SC (2001) Hinokuma K (2010) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148(3):A224

    Article  CAS  Google Scholar 

  11. Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Zhang JG (2017) Li- and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater 7(6):1601284

    Article  CAS  Google Scholar 

  12. Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133(12):4404–4419

    Article  CAS  PubMed  Google Scholar 

  13. Shunmugasundaram R, Arumugam RS, Dahn JR (2015) High capacity Li-rich positive electrode materials with reduced first-cycle irreversible capacity loss. Chem Mater 27(3):757–767

    Article  CAS  Google Scholar 

  14. Mohanty D, Li J, LAbraham DP, Huq A, Payzant EA, Wood DL, Daniel C (2014) Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem Mater 26(21):6272–6280

    Article  CAS  Google Scholar 

  15. Sathiya M, Abakumov AM, Foix D, Rousse G, Ramesha K, Saubanere M, Doublet ML, Vezin H, Laisa CP, Prakash AS, Gonbeau D, Van TG, Tarascon JM (2015) Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater 14(2):230–238

    Article  CAS  PubMed  Google Scholar 

  16. Yu XQ, Lyu YC, Gu L, Wu HM, Bak SM, Zhou YN, Amine K, Ehrlich SN, Li H, Nam KW, Yang XQ (2014) Understanding the rate capability of high-energy-density Li-rich layered Li1.2 Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energy Mater 4(5):1300950

  17. Zhao JK, Wang ZX, Guo HJ, Li XH, He ZJ, Li T (2015) Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. Ceram Int 41(9):11396–11401

    Article  CAS  Google Scholar 

  18. Singh G, Thomas R, Kumar A, Katiyar RS (2012) Electrochemical behavior of Cr-doped composite Li2MnO3-LiMn0.5Ni0.5O2 cathode materials. J Electrochem Soc 159(4):A410–A420

    Article  CAS  Google Scholar 

  19. Wang CC, Manthiram A (2013) Influence of cationic substitutions on the first charge and reversible capacities of lithium-rich layered oxide cathodes. J Mater Chem A 1(35):10209–10217

    Article  CAS  Google Scholar 

  20. Nayak PK, Grinblat J, Levi E, Levi M, Markovsky B, Aurbach D (2017) Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li- ion batteries. Phys Chem Chem Phys 19(8):6142–6152

    Article  CAS  PubMed  Google Scholar 

  21. Qing RP, Shi JL, Xiao DD, Zhang XD, Yin YX, Zhai YB, Gu L, Guo YG (2016) Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv Energy Mater 6(6):1501914

    Article  CAS  Google Scholar 

  22. Nayak PK, Grinblat J, Levi M, Levi E, Kim S, Choi JW, Aurbach D (2016) Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv Energy Mater 6(8):1502398

    Article  CAS  Google Scholar 

  23. Bettge M, Li Y, Sankaran B, Rago ND, Spila T, Haasch RT, Petrov I, Abraham DP (2013) Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina. J Power Sources 233:346–357

    Article  CAS  Google Scholar 

  24. Zheng JM, Li J, Zhang ZR, Guo XJ, Yang Y (2008) The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13CO0.13]O2 cathode material for lithium-ion battery. Solid State Ionics 179(27–32):1794–1799

    Article  CAS  Google Scholar 

  25. Xiao B, Wang B, Liu J, Kaliyappan K, Sun Q, Liu Y, Dadheech G, Balogh MP, Yang L, Sham TK (2017) Highly stable Li1.2Mn0.54 Co0.1Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy 34:120–130

    Article  CAS  Google Scholar 

  26. Liu XY, Huang T, Yu AS (2015) Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochim Acta 163:82–92

    Article  CAS  Google Scholar 

  27. Cao YB, Qi XY, Hu KH, Wang Y, Gan ZG, Li Y, Hu GR, Peng ZD, Du K (2018) Conductive polymers encapsulation to enhance electrochemical performance of Ni-Rich cathode materials for Li-Ion batteries. Acs Appl Mater Inter 10(21):18270–18280

    Article  CAS  Google Scholar 

  28. Xue QR, Li JL, Xu GF, Zhou HW, Wang XD, Kang FY (2014) In situ polyaniline modified cathode material Li [Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries. J Mater Chem A 2(43):18613–18623

    Article  CAS  Google Scholar 

  29. Lai XW, Hu GR, Peng ZD, Tong H, Lu Y, Wang YZ, Qi XY, Xue ZC, Huang Y, Du K, Cao YB (2019) Surface structure decoration of high capacity Li1.2Mn0.54Ni0.13Co0.13O2 cathode by mixed conductive coating of Li1.4Al0.4Ti1.6 (PO4)3 and polyaniline for lithium-ion batteries. J Power Sources 431:144–152

    Article  CAS  Google Scholar 

  30. Chen WM, Qie L, Yuan LX, Xia SA, Hu XL, Zhang WX, Huang YH (2011) Insight into the improvement of rate capability and cyclability in LiFePO4/polyaniline composite cathode. Electrochim Acta 56(6):2689–2695

    Article  CAS  Google Scholar 

  31. Lee Y, Lee J, Lee KY, Mun J, Lee JK, Choi W (2016) Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries. J Power Sources 315:284–293

    Article  CAS  Google Scholar 

  32. Bian XF, Fu Q, Bie XF, Yang PL, Qiu HL, Pang Q, Chen G, Du F, Wei YJ (2015) Improved electrochemical performance and thermal stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 cathode material by Li3PO4 surface coating. Electrochim Acta 174:875–884

    Article  CAS  Google Scholar 

  33. Xue Z, Qi X, Li L, Li W, Xu L, Xie Y, Lai X, Hu G, Peng Z, Cao Y, Du K (2018) Sodium doping to enhance electrochemical performance of overlithiated oxide cathode materials for Li-ion batteries via Li/Na Ion-exchange method. ACS Appl Mater Interfaces 10(32):27141–27149

    Article  CAS  PubMed  Google Scholar 

  34. Zhao L, Sun YY, Song KX, Ding F (2020) Enhanced electrochemical performance of Li-rich Li [Li0.2Mn0.52Ni0.13Co0.13V0.02]O2 cathode materials for lithium ion batteries by Li1.13Mn0.47Ni0.2Co0.2O2 coating. Ionics 26(9):4455–4462

    Article  CAS  Google Scholar 

  35. Wang D, Xu T, Li Y, Pan D, Lu X, Hu YS, Dai S, Bai Y (2018) Integrated surface functionalization of Li-rich cathode materials for Li-ion batteries. ACS Appl Mater Interfaces 10(48):41802–41813

    Article  CAS  PubMed  Google Scholar 

  36. Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M (2015) Nanoscale Surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed Engl 54(44):13058–13062

    Article  CAS  PubMed  Google Scholar 

  37. Chen S, He T, Su YF, Lu Y, Ban LY, Chen L, Zhang QY, Wang J, Chen RJ, Wu F (2017) Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode for lithium-Ion batteries. ACS Appl Mater Inter 9(35):29732–29743

    Article  CAS  Google Scholar 

  38. Mu KC, Tao Y, Peng ZD, Hu GR, Du K, Cao YB (2019) Surface architecture modification of high capacity Li1.2Ni0.2Mn0.6O2 with synergistic conductive polymers LiPPA and PPy for lithium ion batteries. Appl Surf Sci 495:143503

    Article  CAS  Google Scholar 

  39. Wei X, Zhang SC, Yang PH, Li HL, Wang SB, Ren YB, Xing YL, Meng J (2017) Effects of lithium content on structure and electrochemical properties of Li-rich cathode material Li1.2+xMn0.54Ni0.13Co0.13O2. Int J Electrochem Sc 12(6):5636–5645

    Article  CAS  Google Scholar 

  40. Zhang PP, Zhai XH, Huang H, Zhou JF, Li XB, He YP, Guo ZC (2020) Suppression of structural phase transformation of Li-rich Mn-based layered cathode materials with Na ion substitution strategy. Electrochim Acta 349:136402

    Article  CAS  Google Scholar 

  41. Xu MQ, Lian QW, Wu YX, Ma C, Tan PF, Xia QB, Zhang J, Ivey DG, Wei WF (2016) Li+-conductive Li2SiO3 stabilized Li-rich layered oxide with an in situ formed spinel nano-coating layer: toward enhanced electrochemical performance for lithium-ion batteries. Rsc Adv 6(41):34245–34253

    Article  CAS  Google Scholar 

  42. Ryu KS, Kim KM, Kang SG, Lee GJ, Joo J, Chang SH (2000) Electrochemical and physical characterization of lithium ionic salt doped polyaniline as a polymer electrode of lithium secondary battery. Synthetic Met 110(3):213–217

    Article  CAS  Google Scholar 

  43. Ku L, Cai YX, Ma YT, Zheng HF, Liu PF, Qiao ZS, Xie QS, Wang LS, Peng DL (2019) Enhanced electrochemical performances of layered-spinel heterostructured lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. Chem Eng J 370:499–507

    Article  CAS  Google Scholar 

  44. Li CD, Xu J, Xia JS, Liu W, Xiong X, Zheng ZA (2016) Influences of FeF3 coating layer on the electrochemical properties of Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries. Solid State Ionics 292:75–82

    Article  CAS  Google Scholar 

  45. Wang MJ, Yu FD, Sun G, Gu DM, Wang ZB (2018) Optimizing the structural evolution of Li-rich oxide cathode materials via microwave-assisted pre-activation. ACS Appl Energ Mater 1(8):4158–4168

    Article  CAS  Google Scholar 

  46. Liu XH, Wang ZY, Zhuang WD, Ban LQ, Gao M, Li WJ, Yin YP, Wang Z, Lu SG (2020) Li3PO4 modification on a primary particle surface for high performance Li-rich layered oxide Li1.18Mn0.52Co0.15Ni0.15O2 via a synchronous route. New J Chem 44(9):3584–3592

    Article  CAS  Google Scholar 

  47. Dong SD, Zhou Y, Hai CX, Zeng JB, Sun YX, Shen Y, Li X, Ren XF, Sun C, Zhang GT, Wu ZW (2020) Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials. J Power Sources 462:228185

    Article  CAS  Google Scholar 

  48. Chen GR, An J, Meng YM, Yuan CZ, Matthews B, Dou F, Shi LY, Zhou YF, Song PG, Wu G, Zhang DS (2019) Cation and anion co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy 57:157–165

    Article  CAS  Google Scholar 

  49. Zhou L, Yin Z, Tian H, Ding Z, Li X, Wang Z, Guo H (2018) Spinel-embedded and Li3PO4 modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for high-performance Li-ion battries. Appl Surf Sci 456:763–770

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 21276286 and No. 21476268).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xincun Tang or Wei Dang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 825 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tang, X., Ouyang, K. et al. Optimize the surface of the Li-rich cathode materials with lithium phosphate and polyaniline to improve the electrochemical performance. Ionics 27, 4649–4661 (2021). https://doi.org/10.1007/s11581-021-04185-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04185-9

Keywords

Navigation