Skip to main content
Log in

SnSe coupled with nitrogen/sulfur dual-doped rGO for superior anode of lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Tin selenide, which possesses merits of attractive theoretical capacity, inexpensiveness, and low toxicity, is an appealing candidate for next generation anode material of lithium ion batteries (LIBs). However, it suffers from the severe volume variation, aggregation, and weak conductivity. To tackle these issues, we report an in situ preparation of composite of SnSe coupled with nitrogen/sulfur dual-doped rGO (SnSe@N/S-rGO), serving as the superior anode material of LIBs. Notably, the SnSe nanoparticles are uniformly anchored on rGO, with nitrogen doping carbon enhancing the electrical conductivity and sulfur doping generating lattice defects on the surface of carbonaceous materials to provide more active sites. Under 200 mA g−1, this material could display a high capacity up to 785 mAh g−1 over 100 cycles, which is a highly encouraging electrochemical performance for the anode of LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ge S, Leng Y, Liu T et al (2020) A new approach to both high safety and high performance of lithium-ion batteries. Sci Adv 6(9):1–9. https://doi.org/10.1126/sciadv.aay7633

    Article  CAS  Google Scholar 

  2. Li W, Chen S, Yu J, Fang D, Ren B, Zhang S (2016) In-situ synthesis of interconnected SWCNT/OMC framework on silicon nanoparticles for high performance lithium-ion batteries. Green Energy Environ 1(1):91–99. https://doi.org/10.1016/j.gee.2016.04.005

    Article  Google Scholar 

  3. Fan L, Lei S, Kheimeh Sari HM et al (2020) Controllable S-Vacancies of monolayered Mo–S nanocrystals for highly harvesting lithium storage. Nano Energy 78(June):105235. https://doi.org/10.1016/j.nanoen.2020.105235

    Article  CAS  Google Scholar 

  4. Lee SM, Kim J, Moon J et al (2019) A cooperative biphasic MoOx–MoPx promoter enables a fast-charging lithium-ion battery. Nat Commun 12(1):1–9. https://doi.org/10.1038/s41467-020-20297-8

    Article  CAS  Google Scholar 

  5. Ma L, Wang Z, Tian S et al (2020) The α-Fe2O3/graphite anode composites with enhanced electrochemical performance for lithium-ion batteries. Nanotechnology 31(43):435404. https://doi.org/10.1088/1361-6528/aba3a0

    Article  CAS  PubMed  Google Scholar 

  6. Zhao N, Qin J, Chu L et al (2020) Heterogeneous interface of Se@Sb@C boosting potassium storage. Nano Energy 78(September):105345. https://doi.org/10.1016/j.nanoen.2020.105345

    Article  CAS  Google Scholar 

  7. Wu J, Jin G, Chen Y, Wu P, Li Y, Liu YN (2021) Tin nanoparticle/3D framework carbon composite derived from sodium citrate as the stable anode of lithium-ion batteries. Ionics (Kiel) 27(3):1003–1011. https://doi.org/10.1007/s11581-020-03886-x

    Article  CAS  Google Scholar 

  8. Xin F, Whittingham MS (2020) Challenges and development of tin-based anode with high volumetric capacity for Li-Ion batteries. Electrochem Energy Rev 3(4):643–655. https://doi.org/10.1007/s41918-020-00082-3

    Article  CAS  Google Scholar 

  9. Xue H, Cheng Y, Gu Q et al (2021) An SiOx anode strengthened by the self-catalytic growth of carbon nanotubes. Nanoscale 13(6):3808–3816. https://doi.org/10.1039/d0nr08297j

    Article  CAS  PubMed  Google Scholar 

  10. Zhou X, Yu L, Yu XY, Lou XW (2016) Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv Energy Mater 6(22):1–5. https://doi.org/10.1002/aenm.201601177

    Article  CAS  Google Scholar 

  11. Zheng Y, Zhou T, Zhang C, Mao J, Liu H, Guo Z (2016) Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew Chemie 128(10):3469–3474. https://doi.org/10.1002/ange.201510978

    Article  Google Scholar 

  12. Zhang L, Liu J, Wang W et al (2020) Synthesis of N-doped multi-cavity Sn/C composite and utilization to anode in lithium ion batteries. Mater Chem Phys 2021(260):124199. https://doi.org/10.1016/j.matchemphys.2020.124199

    Article  CAS  Google Scholar 

  13. Liu Y, Yu XY, Fang Y et al (2018) Confining SnS2 Ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2(4):725–735. https://doi.org/10.1016/j.joule.2018.01.004

    Article  CAS  Google Scholar 

  14. Wang HG, Wu Q, Wang Y et al (2019) Molecular engineering of monodisperse SnO2 nanocrystals anchored on doped graphene with high-performance lithium/sodium-storage properties in half/full cells. Adv Energy Mater 9(3):1–10. https://doi.org/10.1002/aenm.201802993

    Article  CAS  Google Scholar 

  15. Wang Q, Wu K, Wang H, Liu W, Zhou H (2020) Lithiophilic 3D SnS2@carbon fiber cloth for stable Li metal anode. Wuli Huaxue Xuebao/ Acta Phys - Chim Sin 37(1):1–9. https://doi.org/10.3866/PKU.WHXB202007092

    Article  Google Scholar 

  16. Im HS, Cho YJ, Lim YR et al (2013) Phase evolution of tin nanocrystals in lithium ion batteries. ACS Nano 7(12):11103–11111. https://doi.org/10.1021/nn404837d

    Article  CAS  PubMed  Google Scholar 

  17. Ren J, Li Y, Cao C, Ren RP, Lv YK (2020) A polymer-assisted strategy for hierarchical SnS@N-doped carbon microspheres with enhanced lithium storage performance. Ionics (Kiel) 26(10):4921–4928. https://doi.org/10.1007/s11581-020-03660-z

    Article  CAS  Google Scholar 

  18. Cheng Y, Huang J, Li J et al (2019) SnSe/r-GO Composite with enhanced pseudocapacitance as a high-performance anode for Li-Ion batteries. ACS Sustain Chem Eng 7(9):8637–8646. https://doi.org/10.1021/acssuschemeng.9b00441

    Article  CAS  Google Scholar 

  19. Liu Y, Xu Y, Han Y et al (2019) Facile synthesis of SnSe2 nanoparticles supported on graphite nanosheets for improved sodium storage and hydrogen evolution. J Power Sources 436(June):226860. https://doi.org/10.1016/j.jpowsour.2019.226860

    Article  CAS  Google Scholar 

  20. Chen H, Jia BE, Lu X et al (2019) Two-dimensional SnSe2/CNTs hybrid nanostructures as anode materials for high-performance lithium-ion batteries. Chem - A Eur J 25(42):9973–9983. https://doi.org/10.1002/chem.201901487

    Article  CAS  Google Scholar 

  21. Lee DH, Park CM (2017) Tin selenides with layered crystal structures for Li-Ion batteries: interesting phase change mechanisms and outstanding electrochemical behaviors. ACS Appl Mater Interfaces 9(18):15439–15448. https://doi.org/10.1021/acsami.7b01829

    Article  CAS  PubMed  Google Scholar 

  22. Tang Q, Su H, Cui Y et al (2017) Ternary tin-based chalcogenide nanoplates as a promising anode material for lithium-ion batteries. J Power Sources 2018(379):182–190. https://doi.org/10.1016/j.jpowsour.2018.01.051

    Article  CAS  Google Scholar 

  23. Davitt F, Stokes K, Collins TW et al (2020) Two-dimensional SnSe nanonetworks: growth and evaluation for Li-Ion battery applications. ACS Appl Energy Mater 3(7):6602–6610. https://doi.org/10.1021/acsaem.0c00776

    Article  CAS  Google Scholar 

  24. Wu X, He G, Ding Y. Dealloyed nanoporous materials for rechargeable lithium batteries. Vol 3. Springer Singapore; 2020. doi:https://doi.org/10.1007/s41918-020-00070-7

  25. Yoon YH, Kim DS, Kim MJ et al (2018) Investigation of electrochemical performance on carbon supported tin-selenium bimetallic anodes in lithium-ion batteries. Electrochim Acta 266:193–201. https://doi.org/10.1016/j.electacta.2017.12.188

    Article  CAS  Google Scholar 

  26. Yi Z, Xu J, Xu Z et al (2021) Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries. J Energy Chem 60:241–248. https://doi.org/10.1016/j.jechem.2021.01.022

    Article  Google Scholar 

  27. Zhang Z, Zhao X, Li J (2015) SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries. Electrochim Acta 176:1296–1301. https://doi.org/10.1016/j.electacta.2015.07.140

    Article  CAS  Google Scholar 

  28. Cheng D, Yang L, Hu R et al (2019) Sn-C and Se-C Co-bonding SnSe/few-layered graphene micro-nano structure: route to a densely compacted and durable anode for lithium/sodium-ion batteries. ACS Appl Mater Interfaces 11(40):36685–36696. https://doi.org/10.1021/acsami.9b12204

    Article  CAS  PubMed  Google Scholar 

  29. He C, Wang C, Li F, Wang X, Zhou Y, Wu P (2019) Confining SnSe nanobelts in 3D rGO aerogel for achieving stable and fast lithium storage. Mater Res Bull 115(February):80–87. https://doi.org/10.1016/j.materresbull.2019.03.013

    Article  Google Scholar 

  30. Xia J, Yuan Y, Yan H et al (2019) Electrospun SnSe/C nanofibers as binder-free anode for lithium–ion and sodium-ion batteries. J Power Sources 2020(449):227559. https://doi.org/10.1016/j.jpowsour.2019.227559

    Article  CAS  Google Scholar 

  31. Lin L, Chen J, Liu D, Li X, Wallace GG, Zhang S (2020) Engineering 2D materials: a viable pathway for improved electrochemical energy storage. Adv Energy Mater 10(45):1–27. https://doi.org/10.1002/aenm.202002621

    Article  CAS  Google Scholar 

  32. Wang T, Yang K, Shi J et al (2020) Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries. J Energy Chem 46:71–77. https://doi.org/10.1016/j.jechem.2019.10.021

    Article  Google Scholar 

  33. Gurung A, Naderi R, Vaagensmith B et al (2016) Tin selenide–multi-walled carbon nanotubes hybrid anodes for high performance lithium-ion batteries. Electrochim Acta 211:720–725. https://doi.org/10.1016/j.electacta.2016.06.065

    Article  CAS  Google Scholar 

  34. Luo X, Huang J, Li J et al (2019) Sn-C bonding anchored SnSe nanoparticles grown on carbon nanotubes for high-performance lithium-ion battery anodes. Appl Surf Sci 491(June):95–104. https://doi.org/10.1016/j.apsusc.2019.06.129

    Article  CAS  Google Scholar 

  35. Pan Q, Wu Y, Zheng F et al (2018) Facile synthesis of M-Sb (M = Ni, Sn) alloy nanoparticles embedded in N-doped carbon nanosheets as high performance anode materials for lithium ion batteries. Chem Eng J 348(April):653–660. https://doi.org/10.1016/j.cej.2018.05.043

    Article  CAS  Google Scholar 

  36. Chen W, Wan M, Liu Q, Xiong X, Yu F, Huang Y (2019) Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries. Small Methods 3(4):1–18. https://doi.org/10.1002/smtd.201800323

    Article  CAS  Google Scholar 

  37. Wei D, Xu F, Xu J et al (2020) Three-dimensional porous SnO2@NC framework for excellent energy conversion and storage. Ceram Int 46(2):1396–1402. https://doi.org/10.1016/j.ceramint.2019.09.103

    Article  CAS  Google Scholar 

  38. Wang Y, Hu M, Ai D et al (2019) Sulfur-doped reduced graphene oxide for enhanced sodium ion pseudocapacitance. Nanomaterials 9(5):752. https://doi.org/10.3390/nano9050752

    Article  CAS  PubMed Central  Google Scholar 

  39. Li L, Chen Z, Hu Y et al (2013) Single-layer single-crystalline SnSe nanosheets. J Am Chem Soc 135(4):1213–1216. https://doi.org/10.1021/ja3108017

    Article  CAS  PubMed  Google Scholar 

  40. Wang P, Zhang Y, Yin Y, Fan L, Zhang N, Sun K (2018) In situ synthesis of CuCo2S4@N/S-doped graphene composites with pseudocapacitive properties for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 10(14):11708–11714. https://doi.org/10.1021/acsami.8b00632

    Article  CAS  PubMed  Google Scholar 

  41. Li L, Wang L, Zhang M, Huang Q, Chen L, Wu F (2019) High-performance lithium-ion battery anodes based on Mn3O4/nitrogen-doped porous carbon hybrid structures. J Alloys Compd 775:51–58. https://doi.org/10.1016/j.jallcom.2018.10.106

    Article  CAS  Google Scholar 

  42. Li H, Zhang B, Zhou Q et al (2019) Dual-carbon confined SnO2 as ultralong-life anode for Li-ion batteries. Ceram Int 45(6):7830–7838. https://doi.org/10.1016/j.ceramint.2019.01.090

    Article  CAS  Google Scholar 

  43. Liu K, Zhu S, Dong X, Huang H, Qi M (2020) Ionic liquid-assisted anchoring SnO2 nanoparticles on carbon nanotubes as highly cyclable anode of lithium ion batteries. Adv Mater Interfaces 7(14):1–9. https://doi.org/10.1002/admi.201901916

    Article  CAS  Google Scholar 

  44. Lu C, Li Z, Xia Z et al (2019) Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res 12(12):3051–3058. https://doi.org/10.1007/s12274-019-2551-0

    Article  CAS  Google Scholar 

  45. Wang Y, Zhang Y, Shi J et al (2018) Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Mater 2019(18):366–374. https://doi.org/10.1016/j.ensm.2018.08.014

    Article  Google Scholar 

  46. Guo W, Ding K, Mei S et al (2020) Hollow spheres consisting of SnS nanosheets conformally coated with S-doped carbon for advanced lithium-/sodium-ion battery anodes. ChemElectroChem 7(4):914–921. https://doi.org/10.1002/celc.201901923

    Article  CAS  Google Scholar 

  47. Zhang Z, Shi X, Yang X et al (2016) Nanooctahedra particles assembled FeSe2 microspheres embedded into sulfur-doped reduced graphene oxide sheets as a promising anode for sodium ion batteries. ACS Appl Mater Interfaces 8(22):13849–13856. https://doi.org/10.1021/acsami.5b12148

    Article  CAS  PubMed  Google Scholar 

  48. Yin X, Sun W, Lv LP, Wang Y (2018) Boosting lithium-ion storage performance by synergistically coupling Zn0.76Co0.24S with N-/S-doped carbon and carbon nanofiber. Chem Eng J 346(March):376–387. https://doi.org/10.1016/j.cej.2018.03.062

    Article  CAS  Google Scholar 

  49. Gao S, Wang N, Li S et al (2020) A Multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew Chemie - Int Ed 59(6):2465–2472. https://doi.org/10.1002/anie.201913170

    Article  CAS  Google Scholar 

  50. Park GD, Lee JK, Kang YC (2017) Design and synthesis of Janus-structured mutually doped SnO2-Co3O4 hollow nanostructures as superior anode materials for lithium-ion batteries. J Mater Chem A 5(48):25319–25327. https://doi.org/10.1039/c7ta08335a

    Article  CAS  Google Scholar 

  51. Wang X, Liu B, Xiang Q et al (2014) Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices. Chemsuschem 7(1):308–313. https://doi.org/10.1002/cssc.201300241

    Article  CAS  PubMed  Google Scholar 

  52. Wang D, Zhang K, Zhu Y et al (2016) A novel strategy to prepare graphene oxide-wrapped nanocrystals composite for high-performance lithium storage. Mater Lett 175:32–35. https://doi.org/10.1016/j.matlet.2016.03.135

    Article  CAS  Google Scholar 

  53. Zhang H, Liu Y, Jiang H, Deng Z, Liu H, Li C (2019) Macroporous MoS2/carbon hybrid film with superior ion/electron conductivity for superhigh areal capacity Li-ion batteries. Chem Eng Sci 207:611–618. https://doi.org/10.1016/j.ces.2019.06.043

    Article  CAS  Google Scholar 

  54. Chen Y, Ge D, Zhang J et al (2018) Ultrafine Mo-doped SnO2 nanostructure and derivative Mo-doped Sn/C nanofibers for high-performance lithium-ion batteries. Nanoscale 10(36):17378–17387. https://doi.org/10.1039/c8nr01195h

    Article  CAS  PubMed  Google Scholar 

  55. Cai G, Wu Z, Luo T et al (2020) 3D hierarchical rose-like ni2p@rgo assembled from interconnected nanoflakes as anode for lithium ion batteries. RSC Adv 10(7):3936–3945. https://doi.org/10.1039/c9ra10729k

    Article  CAS  Google Scholar 

  56. Bai L, Pang X, Sun Y, Zhang X, Guo J (2021) N-doped graphene wrapped SnP2O7 for sodium storage with high pseudocapacitance contribution. J Alloys Compd 854:156992. https://doi.org/10.1016/j.jallcom.2020.156992

    Article  CAS  Google Scholar 

  57. Qi H, Cao L, Li J et al (2019) Rice crust-like Fe3O4@C/rGO with improved extrinsic pseudocapacitance for high-rate and long-life Li-ion anodes. J Alloys Compd 804:57–64. https://doi.org/10.1016/j.jallcom.2019.06.284

    Article  CAS  Google Scholar 

  58. Pradhan M, Chakraborty R, Rudra S et al (2021) Intercalation pseudocapacitance in Bi2Se3−MnO2 nanotube composite for high electrochemical energy storage. Electrochim Acta 367:137531. https://doi.org/10.1016/j.electacta.2020.137531

    Article  CAS  Google Scholar 

  59. Song Y, Bai S, Zhu L et al (2018) Tuning pseudocapacitance via C-S bonding in WS2 nanorods anchored on N, S codoped graphene for high-power lithium batteries. ACS Appl Mater Interfaces 10(16):13606–13613. https://doi.org/10.1021/acsami.8b02506

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No.21905087) and the Hunan Provincial Science and Technology Plan Project, China (No.2019TP1001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jue Wang or Yajuan Li.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1683 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, Q., Zhou, F. et al. SnSe coupled with nitrogen/sulfur dual-doped rGO for superior anode of lithium ion batteries. Ionics 27, 3801–3809 (2021). https://doi.org/10.1007/s11581-021-04159-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04159-x

Keywords

Navigation