Skip to main content
Log in

Tin nanoparticle/3D framework carbon composite derived from sodium citrate as the stable anode of lithium-ion batteries

  • Original fPaper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Sn-based anode materials have gained more attention for application in lithium-ion batteries (LIBs), due to tin having the characteristics of high specific capacity, low cost, and environmentally friendly. However, low capacity retention due to the large volume changes upon lithiation/delithiation limits their further development. In this paper, tin nanoparticle/3D framework carbon composite (denoted as Sn@SC) is obtained by calcining the composite of trisodium citrate and stannous sulfide. The Sn@SC composite delivers a stable cycling capacity of 410.9 mAh/g after 150 cycles and 300.1 mAh/g after 950 cycles at 1 A/g. The excellent electrochemical performance can be assigned to the fact that the hollow porous carbon can provide enough space for the volume change of tin nanoparticles in the step-by-step alloying process and shorten the electron transport path, thus increasing the structural stability and rate capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andre D, Hain H, Lamp P, Maglia F, Stiaszny B (2017) Future high-energy density anode materials from an automotive application perspective. J Mater Chem A 5(33):17174–17198. https://doi.org/10.1039/c7ta03108d

    Article  CAS  Google Scholar 

  2. Zhang SP, Wang G, Zhang ZL, Wang BB, Bai JT, Wang H (2019) 3D graphene networks encapsulated with ultrathin SnS nanosheets@hollow mesoporous carbon spheres nanocomposite with pseudocapacitance-enhanced lithium and sodium storage kinetics. Small 15(14):ARTN 1900565. https://doi.org/10.1002/smll.201900565

    Article  CAS  Google Scholar 

  3. Shen T, Yao ZJ, Xia XH, Wang XL, Gu CD, Tu JP (2018) Rationally designed silicon nanostructures as anode material for lithium-ion batteries. Adv Eng Mater 20(1):ARTN 1700591. https://doi.org/10.1002/adem.201700591

    Article  CAS  Google Scholar 

  4. Li M, Lu J, Chen ZW, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30(33):ARTN 1800561. https://doi.org/10.1002/adma.201800561

    Article  CAS  Google Scholar 

  5. Kim C, Song G, Luo LL, Cheong JY, Cho SH, Kwon D, Choi S, Jung JW, Wang CM, Kim ID, Park S (2018) Stress-tolerant nanoporous germanium nanofibers for long cycle life lithium storage with high structural stability. ACS Nano 12(8):8169–8176. https://doi.org/10.1021/acsnano.8b03278

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Liu W, Chen C, Zhao X, Qiu Z, Xu H, Sheng F, Hu Q, Zheng Y, Pennycook S, Su C, Lu J (2019) High yield electrochemical exfoliation of tin selenide quantum dots for high-performance lithium-ion batteries. J Mater Chem A 7:23958–23963. https://doi.org/10.1039/C9TA04643G

    Article  CAS  Google Scholar 

  7. Ying HJ, Han WQ (2017) Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci 4(11):ARTN 1700298. https://doi.org/10.1002/advs.201700298

    Article  CAS  Google Scholar 

  8. Wu XH, Liu ZL, Zheng J, Li XG, Shi ZJ (2017) Arc-discharge synthesis of dual-carbonaceous-layer-coated tin nanoparticles with tunable structures and high reversible lithium storage capacity. J Mater Chem A 5(26):13769–13775. https://doi.org/10.1039/c7ta03323k

    Article  CAS  Google Scholar 

  9. Qiao L, Qiao L, Li XW, Sun XL, Yue HW, He DY (2017) Synthesis and lithium storage properties of interconnected fullerene-like carbon nanofibers encapsulated with tin nanoparticles. J Mater Sci 52(12):6969–6975. https://doi.org/10.1007/s10853-017-0929-5

    Article  CAS  Google Scholar 

  10. Zhao XX, Wang WH, Hou Z, Yu YK, Di Q, Wu XT, Wei GJ, Quan ZW, Zhang J (2019) Monodisperse tin nanoparticles and hollow tin oxide nanospheres as anode materials for high performance lithium ion batteries. Inorgan Chem Front 6(2):473–476. https://doi.org/10.1039/c8qi01143e

    Article  CAS  Google Scholar 

  11. Ye XC, Lin ZH, Liang SJ, Huang XH, Qiu XY, Qiu YC, Liu XM, Xie D, Deng H, Xiong XH, Lin Z (2019) Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Lett 19(3):1860–1866. https://doi.org/10.1021/acs.nanolett.8b04944

    Article  CAS  PubMed  Google Scholar 

  12. Riedel O, Duttmann A, Duhnen S, Kony-Olesiak J, Gutsche C, Parisi J, Winter M, Knipper M, Placke T (2019) Surface-modified tin nanoparticles and their electrochemical performance in lithium ion battery cells. Acs Appl Nano Mater 2(6):3577–3589. https://doi.org/10.1021/acsanm.9b00544

    Article  CAS  Google Scholar 

  13. Li ST, Wang ZM, Liu J, Yang LY, Guo Y, Cheng LZ, Lei M, Wang WJ (2016) Yolk-shell Sn@C eggette-like nanostructure: application in lithium-ion and sodium-ion batteries. ACS Appl Mater Interfaces 8(30):19438–19445. https://doi.org/10.1021/acsami.6b04736

    Article  CAS  PubMed  Google Scholar 

  14. Ma B, Luo J, Deng X, Wu Z, Luo Z, Wang X, Wang Y (2018) Hollow silicon–tin nanospheres encapsulated by N-doped carbon as anode materials for lithium-ion batteries. ACS Appl Nano Mater 1(12):6989–6999. https://doi.org/10.1021/acsanm.8b01793

    Article  CAS  Google Scholar 

  15. Chen KS, Xu R, Luu NS, Secor EB, Hamamoto K, Li QQ, Kim S, Sangwan VK, Balla I, Guiney LM, Seo JWT, Yu XK, Liu WW, Wu JS, Wolverton C, Dravid VP, Barnett SA, Lu J, Amine K, Hersam MC (2017) Comprehensive enhancement of nanostructured lithium-ion battery cathode materials via conformal graphene dispersion. Nano Lett 17(4):2539–2546. https://doi.org/10.1021/acs.nanolett.7b00274

    Article  CAS  PubMed  Google Scholar 

  16. Wang YG, Li HQ, He P, Hosono E, Zhou HS (2010) Nano active materials for lithium-ion batteries. Nanoscale 2(8):1294–1305. https://doi.org/10.1039/c0nr00068j

    Article  CAS  PubMed  Google Scholar 

  17. Mao M, Yan F, Cui A, Ma J, Zhang M, Wang T, Wang C (2017) Pipe-wire TiO2-Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett 17. https://doi.org/10.1021/acs.nanolett.7b01152

  18. Kang S, Chen X, Niu JJ (2018) Sn wears super skin: a new design for long cycling batteries. Nano Lett 18(1):467–474. https://doi.org/10.1021/acs.nanolett.7b04416

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Matios E, Wang CL, Luo JM, Lu X, Hu XF, Zhang YW, Li WY (2019) Tin nanoparticles embedded in a carbon buffer layer as preferential nucleation sites for stable sodium metal anodes. J Mater Chem A 7(41):23747–23755. https://doi.org/10.1039/c9ta05176g

    Article  CAS  Google Scholar 

  20. Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20(6):1160-+. https://doi.org/10.1002/adma.200701364

    Article  CAS  Google Scholar 

  21. Liu YC, Zhang N, Jiao LF, Chen J (2015) Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv Mater 27(42):6702-+. https://doi.org/10.1002/adma.201503015

    Article  CAS  PubMed  Google Scholar 

  22. Xu W, Kong LJ, Huang H, Zhong M, Liu YY, Bu XH (2019) Sn nanocrystals embedded in porous TiO2/C with improved capacity for sodium-ion batteries. Inorgan Chem Front 6(10):2675–2681. https://doi.org/10.1039/c9qi00789j

    Article  CAS  Google Scholar 

  23. Cui GL, Hu YS, Zhi LJ, Wu DQ, Lieberwirth I, Maier J, Mullen K (2007) A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries. Small 3(12):2066–2069. https://doi.org/10.1002/smll.200700350

    Article  CAS  PubMed  Google Scholar 

  24. Wang M, Huang Y, Zhu Y, Wu X, Zhang N, Zhang H (2018) Binder-free flower-like SnS2 nanoplates decorated on the graphene as a flexible anode for high-performance lithium-ion batteries. J Alloys Compd 774

  25. Liu XL, Meng YS, Li RN, Du MQ, Zhu FL, Zhang Y (2019) Nitrogen-doped carbon-coated cotton-derived carbon fibers as high-performance anode materials for lithium-ion batteries. Ionics 25(12):5799–5807. https://doi.org/10.1007/s11581-019-03146-7

    Article  CAS  Google Scholar 

  26. Huang R, Li YF, Liu WB, Song YH, Wang L (2020) N-doped honeycomb-like carbon networks loaded with ultra-fine Fe2O3 nanoparticles for lithium-ion batteries. Ceram Int 46(11):17478–17485. https://doi.org/10.1016/j.ceramint.2020.04.043

    Article  CAS  Google Scholar 

  27. Sun YN, Goktas M, Zhao L, Adelhelm P, Han BH (2020) Ultrafine SnO2 nanoparticles anchored on N, P-doped porous carbon as anodes for high performance lithium-ion and sodium-ion batteries. J Colloid Interface Sci 572:122–132. https://doi.org/10.1016/j.jcis.2020.03.063

    Article  CAS  PubMed  Google Scholar 

  28. Yang JQ, Zhou XL, Wu DH, Zhao XD, Zhou Z (2017) S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater 29(6):UNSP 1604108. https://doi.org/10.1002/adma.201604108

    Article  CAS  Google Scholar 

  29. Zhu JK, Tu WM, Pan HF, Zhang H, Liu B, Cheng YP, Deng Z, Zhang HN (2020) Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N,S-dual-doped reduced Graphene oxide for lithium ion batteries. ACS Nano 14(5):5780–5787. https://doi.org/10.1021/acsnano.0c00712

    Article  CAS  PubMed  Google Scholar 

  30. Fang YX, Liu RP, Zeng LX, Liu JB, Xu LH, He XT, Huang BQ, Chen QH, Wei MD, Qian QR (2019) Preparation of Ge/N, S co-doped ordered mesoporous carbon composite and its long-term cycling performance of lithium-ion batteries. Electrochim Acta 318:737–745. https://doi.org/10.1016/j.electacta.2019.06.123

    Article  CAS  Google Scholar 

  31. Zhang X, Zhu G, Wang M, Li J, Lu T, Pan L (2017) Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries. Carbon 116(Complete):686–694

    Article  CAS  Google Scholar 

  32. Ye HJ, Li HQ, Jiang FQ, Yin J, Zhu H (2018) In situ fabrication of nitrogen-doped carbon-coated SnO2/SnS heterostructures with enhanced performance for lithium storage. Electrochim Acta 266:170–177. https://doi.org/10.1016/j.electacta.2018.02.032

    Article  CAS  Google Scholar 

  33. Qiu D, Guan J, Li M, Kang C, Wei J, Li Y, Xie Z, Wang F, Yang R (2019) Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv Funct Mater 29(32):1903496. https://doi.org/10.1002/adfm.201903496

    Article  CAS  Google Scholar 

  34. Li WH, Sun XL, Yu Y (2017) Si-, Ge-, Sn-based anode materials for lithium-ion batteries: from structure design to electrochemical performance. Small Methods 1(3):UNSP 1600037. https://doi.org/10.1002/smtd.201600037

    Article  CAS  Google Scholar 

  35. Sun F, Liu XY, Wu HB, Wang LJ, Gao JH, Li HX, Lu YF (2018) In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor. Nano Lett 18(6):3368–3376. https://doi.org/10.1021/acs.nanolett.8b00134

    Article  CAS  PubMed  Google Scholar 

  36. Choi JS, Lee HJ, Ha JK, Cho KK (2018) Synthesis and electrochemical properties of amorphous carbon coated Sn anode material for lithium ion batteries and sodium ion batteries. J Nanosci Nanotechnol 18(9):6459–6462. https://doi.org/10.1166/jnn.2018.15684

    Article  CAS  PubMed  Google Scholar 

  37. Zhang X, Wang CS, Dong XL, Liang JS, Gao DD, Yang WF, Zhang ZY (2020) Laser sintering technique to fabricate nano-Sn/graphite anode for lithium ion batteries: Microstructures and electrochemical properties. J Solid State Chem 290:ARTN 121543. https://doi.org/10.1016/j.jssc.2020.121543

    Article  CAS  Google Scholar 

  38. Xu ZL, Fan L, Ni XY, Han J, Guo R (2019) Sn-encapsulated N-doped porous carbon fibers for enhancing lithium-ion battery performance. RSC Adv 9(16):8753–8758. https://doi.org/10.1039/c8ra10201e

    Article  CAS  Google Scholar 

  39. Jin A, Kang N, Um JH, Ko IH, Kim MS, Kim K, Kim SH, Yu SH, Sung YE (2020) Sn(salen)-derived SnS nanoparticles embedded in N-doped carbon for high performance lithium-ion battery anodes. Chem Commun 56(58):8095–8098. https://doi.org/10.1039/d0cc02871a

    Article  CAS  Google Scholar 

  40. Zhang Y, Wu G, Shi YL, Hu Y, Sun YW, Ju ZC, Zhuang QC (2019) Title confined Sn nanoparticles into 3D porous carbon skeleton for high performance lithium storage. Chemistryselect 4(4):1285–1291. https://doi.org/10.1002/slct.201803617

    Article  CAS  Google Scholar 

  41. Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S (2014) Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes. Electrochim Acta 128:163–171. https://doi.org/10.1016/j.electacta.2013.09.007

    Article  CAS  Google Scholar 

  42. Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J (2014) Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8(2):1728–1738

    Article  CAS  Google Scholar 

  43. Miao-Sheng Z, Huai-He S, Song-Yun Z, Xiao-Hong C (2004) Preparation and electrochemical properties of Sn/C composite. Chin J Power Sour

  44. Chengshuai, Chang, Lian, Liu, Shulan, Wang, Li, Li, Xuan, Liu (2018) Influence of morphology and structure on electrochemical performances of Li-ion battery Sn anodes. Metall Mater Trans

  45. Wang W, Du Z, Qian J, Chen F (2020) Three-dimensional porous Sn/NC spheres with outstanding properties for lithium ion battery. Mater Lett 259:126827. https://doi.org/10.1016/j.matlet.2019.126827

    Article  CAS  Google Scholar 

  46. Liu Y, Zhang N, Jiao L, Chen J (2015) Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv Mater (Deerfield Beach, Fla) 27. https://doi.org/10.1002/adma.201503015

Download references

Acknowledgements

This work was supported by the Hunan Provincial Science and Technology Plan Project, China (No.2019TP1001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Jin, G., Chen, Y. et al. Tin nanoparticle/3D framework carbon composite derived from sodium citrate as the stable anode of lithium-ion batteries. Ionics 27, 1003–1011 (2021). https://doi.org/10.1007/s11581-020-03886-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03886-x

Keywords

Navigation