Skip to main content
Log in

A review on the prominence of porosity in tungsten oxide thin films for electrochromism

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Transition metal oxides have gained substantial attention in the previous decade by virtue of their distinctive physical and chemical properties. Amidst all, tungsten oxide (WO3) is emerging as distinct metal oxide on account of its outstanding electrochromic performance. Furthermore, optical-switching speed has topmost importance in the actual device. The sole approach to enhance this attribute is to escalate surface area of the electrochromic coatings, which can be done by instigating porosity within bulk material. Porosity can be considered as one of the pivotal facets of functionalized electrochromic thin films. Cations can be made to get transported into the depth of the host with the presence of high porosity in a structure. This featured article is attempting to pivot the path as how porosity is upgrading the electrochromic attribute of WO3 films. Furthermore, various methods to achieve optimum porosity of WO3 films leading to best electrochromic performance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Rosseinsky DR, Mortimer RJ (2001) Electrochromic systems and the prospects for devices. Adv Mater 13:783–793. https://doi.org/10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D

    Article  CAS  Google Scholar 

  2. Buyan M, Brühwiler PA, Azens A, Gustavsson G, Karmhag R, Granqvist CG (2006) Facial warming and tinted helmet visors. Int J Ind Ergon 36:11–16. https://doi.org/10.1016/j.ergon.2005.06.005

    Article  Google Scholar 

  3. Demiryont H, Moorehead D (2009) Electrochromic emissivity modulator for spacecraft thermal management. Sol Energy Mater Sol Cells 93:2075–2078. https://doi.org/10.1016/j.solmat.2009.02.025

    Article  CAS  Google Scholar 

  4. Vuong NM, Kim D, Kim H (2013) Electrochromic properties of porous WO3-TiO2 core-shell nanowires. J Mater Chem C 1:3399–3407. https://doi.org/10.1039/c3tc30157e

    Article  CAS  Google Scholar 

  5. Yang Y, Kim D, Schmuki P (2011) Lithium-ion intercalation and electrochromism in ordered V 2O5 nanoporous layers. Electrochem Commun 13:1198–1201. https://doi.org/10.1016/j.elecom.2011.08.045

    Article  CAS  Google Scholar 

  6. Dalavi DS, Devan RS, Patil RS, Ma YR, Kang MG, Kim JH, Patil PS (2013) Electrochromic properties of dandelion flower like nickel oxide thin films. J Mater Chem A 1:1035–1039. https://doi.org/10.1039/c2ta00842d

    Article  CAS  Google Scholar 

  7. Buch VR, Chawla AK, Rawal SK (2016) Review on electrochromic property for WO3 thin films using different deposition techniques. Mater Today Proc 3:1429–1437. https://doi.org/10.1016/j.matpr.2016.04.025

    Article  Google Scholar 

  8. Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C: Photochem Rev 12:237–268. https://doi.org/10.1016/j.jphotochemrev.2011.07.001

    Article  CAS  Google Scholar 

  9. Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C: Photochem Rev 11:179–209. https://doi.org/10.1016/j.jphotochemrev.2011.02.003

    Article  CAS  Google Scholar 

  10. M J (2014) No Title. Nanocrystalline tungsten trioxide thin films. Structural, Optical and Electronic Characterization. Uppsala University

  11. Granqvist CG (1995) Introduction. في: Handbook of inorganic electrochromic materials. Elsevier, صص 1–15

  12. Granqvist CG (2000) Electrochromic tungsten oxide films: review of progress 1993-1998. Sol Energy Mater Sol Cells 60:201–262. https://doi.org/10.1016/S0927-0248(99)00088-4

    Article  CAS  Google Scholar 

  13. Niklasson GA, Granqvist CG (2007) Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 17:127–156. https://doi.org/10.1039/b612174h

    Article  CAS  Google Scholar 

  14. González-Borrero PP, Sato F, Medina AN, Baesso ML, Bento AC, Baldissera G, Persson C, Niklasson GA, Granqvist CG, Ferreira da Silva A (2010) Optical band-gap determination of nanostructured WO3 film. Appl Phys Lett 96:10–13. https://doi.org/10.1063/1.3313945

    Article  CAS  Google Scholar 

  15. Purwanto A, Widiyandari H, Ogi T, Okuyama K (2011) Role of particle size for platinum-loaded tungsten oxide nanoparticles during dye photodegradation under solar-simulated irradiation. Catal Commun 12:525–529. https://doi.org/10.1016/j.catcom.2010.11.020

    Article  CAS  Google Scholar 

  16. Tateishi I, Katsumata H, Suzuki T, Kaneco S (2017) Visible-light-induced AgI/Bi7O9I3 composites with enhanced photocatalytic activity. Catal Lett 147:1503–1509. https://doi.org/10.1007/s10562-017-2059-8

    Article  CAS  Google Scholar 

  17. Berggren L, Niklasson GA (2006) Optical charge transfer absorption in lithium-intercalated tungsten oxide thin films. Appl Phys Lett 88. https://doi.org/10.1063/1.2177548

  18. Bamwenda GR, Sayama K, Arakawa H (1999) The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO3-Fe2 + -Fe3+ aqueous suspension. J Photochem Photobiol A Chem 122:175–183. https://doi.org/10.1016/S1010-6030(99)00026-X

    Article  CAS  Google Scholar 

  19. Widiyandari H, Purwanto A, Balgis R, Ogi T, Okuyama K (2012) CuO/WO 3 and Pt/WO 3 nanocatalysts for efficient pollutant degradation using visible light irradiation. Chem Eng J 180:323–329. https://doi.org/10.1016/j.cej.2011.10.095

    Article  CAS  Google Scholar 

  20. Roldán-Carmona C, Malinkiewicz O, Soriano A, Mínguez Espallargas G, Garcia A, Reinecke P, Kroyer T, Dar MI, Nazeeruddin MK, Bolink HJ (2014) Flexible high efficiency perovskite solar cells. Energy Environ Sci 7:994–997. https://doi.org/10.1039/c3ee43619e

    Article  CAS  Google Scholar 

  21. Widiyandari H, Firdaus I, Kadarisman VGS, Purwanto A (2016) Optical properties and photocatalytic activities of tungsten oxide (WO3) with platinum co-catalyst addition. AIP Conf Proc 1712:1–7. https://doi.org/10.1063/1.4941910

    Article  Google Scholar 

  22. Deb SK (1973) Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos Mag 27:801–822. https://doi.org/10.1080/14786437308227562

    Article  CAS  Google Scholar 

  23. Lee SH, Seong MJ, Cheong HM et al (2003) Effect of crystallinity on electrochromic mechanism of LixWO3 thin films. Solid State Ionics 156:447–452. https://doi.org/10.1016/S0167-2738(02)00732-4

    Article  CAS  Google Scholar 

  24. Darmawi S, Burkhardt S, Leichtweiss T, Weber DA, Wenzel S, Janek J, Elm MT, Klar PJ (2015) Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys Chem Chem Phys 17:15903–15911. https://doi.org/10.1039/c5cp02482j

    Article  CAS  PubMed  Google Scholar 

  25. Triana CA, Granqvist CG, Niklasson GA (2015) Electrochromism and small-polaron hopping in oxygen deficient and lithium intercalated amorphous tungsten oxide films. J Appl Phys 118. https://doi.org/10.1063/1.4926488

  26. Ledwith T (1996) Electrochromism: fundamentals and applications. ByP. M. S. Monk, R. J. Moritimer, D. R. Rosseinsky, VCH, Weinheim 1995, XXIII, 216 PP., hardcover, DM 168.00 ISBN 3-527-29063-X. Adv Mater 8:700–702. https://doi.org/10.1002/adma.19960080826

    Article  Google Scholar 

  27. Doblhofer K (2008) Electrochromism and electrochromic devices, by Paul Monk, Roger Mortimer, David Rosseinsky, Cambridge University Press, 2007, ISBN 9780521822695, £80.00 (US$160.00). Soft Mater 6:156–156. https://doi.org/10.1080/15394450802046945

    Article  Google Scholar 

  28. Faughnan BW, Crandall RS, Lampert MA (1975) Model for the bleaching of WO3 electrochromic films by an electric field. Appl Phys Lett 27:275–277. https://doi.org/10.1063/1.88464

    Article  CAS  Google Scholar 

  29. Karlin KD (2016) Editorial Board. Progressio 44:97331. https://doi.org/10.1016/S0079-6786(16)00005-4

    Article  Google Scholar 

  30. Johansson MB, Zietz B, Niklasson GA, Österlund L (2014) Optical properties of nanocrystalline WO3 and WO3-x thin films prepared by DC magnetron sputtering. J Appl Phys 115. https://doi.org/10.1063/1.4880162

  31. Schirmer OF, Salje E (1980) The W5+ polaron in crystalline low temperature WO3 ESR and optical absorption. Solid State Commun 33:333–336. https://doi.org/10.1016/0038-1098(80)91164-3

    Article  CAS  Google Scholar 

  32. Bechinger C, Burdis MS, Zhang JG (1997) Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films. Solid State Commun 101:753–756. https://doi.org/10.1016/S0038-1098(96)00703-X

    Article  CAS  Google Scholar 

  33. El-Nahass MM, Saadeldin MM, Ali HAM, Zaghllol M (2015) Electrochromic properties of amorphous and crystalline WO3 thin films prepared by thermal evaporation technique. Mater Sci Semicond Process 29:201–205. https://doi.org/10.1016/j.mssp.2014.02.051

    Article  CAS  Google Scholar 

  34. Donnadieu A, Davazoglou D, Abdellaoui A (1988) Structure, optical and electro-optical properties of polycrystalline WO3 and MoO3 thin films prepared by chemical vapour deposition. Thin Solid Films 164:333–338. https://doi.org/10.1016/0040-6090(88)90158-7

    Article  Google Scholar 

  35. Zhang J, Benson DK, Tracy CE et al (1997) Chromic mechanism in amorphous WO 3 films. J Electrochem Soc 144:2022–2026. https://doi.org/10.1149/1.1837737

    Article  CAS  Google Scholar 

  36. Svensson JSEM, Granqvist CG (1985) Electrochromic coatings for smart windows: crystalline and amorphous WO3 films. Thin Solid Films 126:31–36. https://doi.org/10.1016/0040-6090(85)90171-3

    Article  CAS  Google Scholar 

  37. Goldner RB, Haas TE, Arntz FO, Slaven S, Wong KK, Wilkens B, Shepard C, Lanford W (1993) Nuclear reaction analysis profiling as direct evidence for lithium ion mass transport in thin film “rocking-chair” structures. Appl Phys Lett 62:1699–1701. https://doi.org/10.1063/1.109580

    Article  CAS  Google Scholar 

  38. Ashrit PV, Benaissa K, Bader G et al (1993) Lithiation studies on some transition metal oxides for an all-solid thin film electrochromic system. Solid State Ionics 59:47–57. https://doi.org/10.1016/0167-2738(93)90230-Z

    Article  CAS  Google Scholar 

  39. Witham HS, Chindaudom P, An I, Collins RW, Messier R, Vedam K (1993) Effect of preparation conditions on the morphology and electrochromic properties of amorphous tungsten oxide films. J Vac Sci Technol A Vacuum, Surfaces, Film 11:1881–1887. https://doi.org/10.1116/1.578517

    Article  CAS  Google Scholar 

  40. Deb SK (1969) A Novel Electrophotographic System. Appl Opt 8:192. https://doi.org/10.1364/ao.8.s1.000192

    Article  PubMed  Google Scholar 

  41. Monk PMS, Rosseinsky DR, Mortimer RJ (2015) Electrochromic Materials and devices based on viologens. Electrochromic Mater Dev 77:57–90. https://doi.org/10.1002/9783527679850.ch3

    Article  Google Scholar 

  42. Azam A, Kim J, Park J, Novak TG, Tiwari AP, Song SH, Kim B, Jeon S (2018) Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano Lett 18:5645–5651. https://doi.org/10.1021/acs.nanolett.8b02150

    Article  CAS  Google Scholar 

  43. Bon-Ryul K, Kim KH, Ahn HJ (2019) Novel tunneled phosphorus-doped WO 3 films achieved using ignited red phosphorus for stable and fast switching electrochromic performances. Nanoscale 11:3112–3116. https://doi.org/10.1039/c8nr08793h

    Article  CAS  Google Scholar 

  44. Xie Z, Liu Q, Zhang Q, Lu B, Zhai J, Diao X (2019) Fast-switching quasi-solid state electrochromic full device based on mesoporous WO3 and NiO thin films. Sol Energy Mater Sol Cells 200:110017. https://doi.org/10.1016/j.solmat.2019.110017

    Article  CAS  Google Scholar 

  45. Xue J, Zhu Y, Jiang M, Su J, Liu Y (2015) Electrochromic WO3 thin films prepared by combining ion-beam sputtering deposition with post-annealing. Mater Lett 149:127–129. https://doi.org/10.1016/j.matlet.2015.02.100

    Article  CAS  Google Scholar 

  46. Kim H, Choi D, Kim K, Chu W, Chun DM, Lee CS (2018) Effect of particle size and amorphous phase on the electrochromic properties of kinetically deposited WO3 films. Sol Energy Mater Sol Cells 177:44–50. https://doi.org/10.1016/j.solmat.2017.06.010

    Article  CAS  Google Scholar 

  47. Sahu DR, Hung CY, Wang SC, Huang JL (2017) Existence of electrochromic reversibility at the 1000th cyclic voltammetry for spin coating WO3 film. Ionics (Kiel) 23:3227–3233. https://doi.org/10.1007/s11581-017-2097-7

    Article  CAS  Google Scholar 

  48. Shim DY, Kim WS, Chang SM, Kim JM (2020) Fabrication of periodic nano-porous surface structure for highly sensitive gravimetric quartz crystal applications. Anal Chim Acta 1107:30–39. https://doi.org/10.1016/j.aca.2020.01.071

    Article  CAS  PubMed  Google Scholar 

  49. Jayatissa AH, Dadi A, Aoki T (2005) Nanocrystalline WO 3 films prepared by two-step annealing. Appl Surf Sci 244:453–457. https://doi.org/10.1016/j.apsusc.2004.10.101

    Article  CAS  Google Scholar 

  50. Law KY (2013) Nanostructured coatings, surfaces and films. Surf Innov 1:69–70. https://doi.org/10.1680/si.13.00005

    Article  Google Scholar 

  51. Reyes LF, Saukko S, Hoel A, Lantto V, Granqvist CG (2004) Structure engineering of WO3 nanoparticles for porous film applications by advanced reactive gas deposition. J Eur Ceram Soc 24:1415–1419. https://doi.org/10.1016/S0955-2219(03)00417-5

    Article  CAS  Google Scholar 

  52. Chatzikyriakou D (2016) Influence of porosity on the electrochromic properties of tungsten oxide films. 25–40

  53. Beck JSKCTLMERWJVJC (1992) 2»Éø͸ÐÔμÄ © 19 9 2 Nature Publishing Group. Nature 359:710–713

  54. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821. https://doi.org/10.1038/nature00785

    Article  CAS  PubMed  Google Scholar 

  55. Innocenzi P, Malfatti L (2013) Mesoporous thin films: properties and applications. Chem Soc Rev 42:4198–4216. https://doi.org/10.1039/c3cs35377j

    Article  CAS  PubMed  Google Scholar 

  56. Innocenzi P, Malfatti L, Soler-Illia GJAA (2011) Hierarchical mesoporous films: from self-assembly to porosity with different length scales. Chem Mater 23:2501–2509. https://doi.org/10.1021/cm200050r

    Article  CAS  Google Scholar 

  57. Zou YS, Zhang YC, Lou D, Wang HP, Gu L, Dong YH, Dou K, Song XF, Zeng HB (2014) Structural and optical properties of WO3 films deposited by pulsed laser deposition. J Alloys Compd 583:465–470. https://doi.org/10.1016/j.jallcom.2013.08.166

    Article  CAS  Google Scholar 

  58. Patel KJ, Panchal CJ, Kheraj VA, Desai MS (2009) Growth, structural, electrical and optical properties of the thermally evaporated tungsten trioxide (WO3) thin films. Mater Chem Phys 114:475–478. https://doi.org/10.1016/j.matchemphys.2008.09.071

    Article  CAS  Google Scholar 

  59. Rao CM (2013) Structure and properties of WO3 thin films for electrochromic device application. J Non-Oxide Glas 5:1–8

    CAS  Google Scholar 

  60. Wu WT, Liao WP, Chen LY, Chen JS, Wu JJ (2009) Outperformed electrochromic behavior of poly(ethylene glycol)-template nanostructured tungsten oxide films with enhanced charge transfer/transport characteristics. Phys Chem Chem Phys 11:9751–9758. https://doi.org/10.1039/b912202h

    Article  CAS  PubMed  Google Scholar 

  61. Wang Q, Wen Z, Jeong Y et al (2006) Li-driven electrochemical properties of WO3 nanorods. Nanotechnology 17:3116–3120. https://doi.org/10.1088/0957-4484/17/13/006

    Article  CAS  Google Scholar 

  62. Krins N, Bass JD, Grosso D, Henrist C, Delaigle R, Gaigneaux EM, Cloots R, Vertruyen B, Sanchez C (2011) NbVO5 mesoporous thin films by evaporation induced micelles packing: pore size dependence of the mechanical stability upon thermal treatment and Li insertion/extraction. Chem Mater 23:4124–4131. https://doi.org/10.1021/cm103481n

    Article  CAS  Google Scholar 

  63. Yang P, Sun P, Mai W (2016) Electrochromic energy storage devices. Mater Today 19:394–402. https://doi.org/10.1016/j.mattod.2015.11.007

    Article  CAS  Google Scholar 

  64. Tong Z, Hao J, Zhang K, Zhao J, Su BL, Li Y (2014) Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films. J Mater Chem C 2:3651–3658. https://doi.org/10.1039/c3tc32417f

    Article  CAS  Google Scholar 

  65. Nagasaki M, Kanamura K (2019) High-performance lithium metal rechargeable battery using an ultrafine porous polyimide separator with three-dimensionally ordered macroporous structure. ACS Appl Energy Mater 2:3896–3903. https://doi.org/10.1021/acsaem.9b00537

    Article  CAS  Google Scholar 

  66. Jilani A, Abdel-wahab MS, Hammad AH (2017) Advance deposition techniques for thin film and coating. Mod Technol Creat Thin-film Syst Coat. https://doi.org/10.5772/65702

  67. Savale PA (2016) Physical vapor deposition (PVD) methods for synthesis of thin films: a comparative study. Sch Res Libr Arch Appl Sci Res 8:1–8

    CAS  Google Scholar 

  68. Abegunde OO, Akinlabi ET, Oladijo OP et al (2019) Overview of thin film deposition techniques. AIMS Mater Sci 6:174–199. https://doi.org/10.3934/MATERSCI.2019.2.174

    Article  CAS  Google Scholar 

  69. Ebersole S (1946) Featuring films. Xray Tech 17:466–470

    CAS  PubMed  Google Scholar 

  70. Singh J, Wolfe DE (2005) Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD). J Mater Sci 40:1–26. https://doi.org/10.1007/s10853-005-5682-5

    Article  CAS  Google Scholar 

  71. Kim H, Senthil K, Yong K (2009) Synthesis of novel double-layer nanostructures of SiC-WO x by a two step thermal evaporation process. Nanoscale Res Lett 4:802–808. https://doi.org/10.1007/s11671-009-9318-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. H. WK. KM ;Adach (2004) Thin film materials technology: sputtering of control compound materials, 1st ط. Newyorkk

  73. Corrêa DS, Pazinato JCO, De Freitas MA et al (2014) Tungsten oxide thin films grown by thermal evaporation with high resistance to leaching. J Braz Chem Soc 25:822–830. https://doi.org/10.5935/0103-5053.20140041

    Article  CAS  Google Scholar 

  74. Gas Phase Nanoparticle Synthesis | Claes Granqvist | Springer. https://www.springer.com/gp/book/9781402024436. Accessed 24 فبراير 2021

  75. Granqvist CG, Buhrman RA (1976) Ultrafine metal particles. J Appl Phys 47:2200–2219. https://doi.org/10.1063/1.322870

    Article  CAS  Google Scholar 

  76. Mea JS, Gauvin S, Ashrit PV (2007) Design of a physical vapor transport cell for time controlled deposition of nucleation phase organic thin films. Rev Sci Instrum 78. https://doi.org/10.1063/1.2723666

  77. Ponzoni A, Comini E, Sberveglieri G, Zhou J, Deng SZ, Xu NS, Ding Y, Wang ZL (2006) Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl Phys Lett 88:28–31. https://doi.org/10.1063/1.2203932

    Article  CAS  Google Scholar 

  78. Abdel Samad B, Thibodeau J, Ashrit PV (2015) Preparation of nanostructured tungsten trioxide thin films by high pressure sublimation and condensation. Appl Surf Sci 350:94–99. https://doi.org/10.1016/j.apsusc.2015.03.054

    Article  CAS  Google Scholar 

  79. Ashrit PV (2001) Dry lithiation study of nanocrystalline, polycrystalline and amorphous tungsten trioxide thin-films. Thin Solid Films 385:81–88. https://doi.org/10.1016/S0040-6090(00)01895-2

    Article  CAS  Google Scholar 

  80. Papadimitropoulos G, Vourdas N, Giannakopoulos K et al (2011) Porous hot-wire deposited WO3 films with high optical transmission. J Appl Phys 109. https://doi.org/10.1063/1.3585839

  81. Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56:159–172. https://doi.org/10.1016/S0042-207X(99)00189-X

    Article  CAS  Google Scholar 

  82. Swann S (1988) Magnetron sputtering. Phys Technol 19:67–75. https://doi.org/10.1088/0305-4624/19/2/304

    Article  CAS  Google Scholar 

  83. Maurya DK, Sardarinejad A, Alameh K (2014) Recent developments in R.F. magnetron sputtered thin films for pH sensing applications-an overview. Coatings 4:756–771. https://doi.org/10.3390/coatings4040756

    Article  Google Scholar 

  84. Lee WJ, Fang YK, Ho JJ, Hsieh WT, Ting SF, Huang D, Ho FC (2000) Effects of surface porosity on tungsten trioxide (WO3) films’ electrochromic performance. J Electron Mater 29:183–187. https://doi.org/10.1007/s11664-000-0139-8

    Article  CAS  Google Scholar 

  85. Karuppasamy A (2013) Electrochromism in surface modified crystalline WO 3 thin films grown by reactive DC magnetron sputtering. Appl Surf Sci 282:77–83. https://doi.org/10.1016/j.apsusc.2013.05.051

    Article  CAS  Google Scholar 

  86. Lollman DBB, Lemire C, Al Mohammad A et al (2002) Reactive R.F. Magnetron sputtering deposition of WO3 thin films. Sensors Actuators. B Chem 84:49–54. https://doi.org/10.1016/S0925-4005(01)01073-5

    Article  Google Scholar 

  87. Godinho V, Moskovkin P, Álvarez R, Caballero-Hernández J, Schierholz R, Bera B, Demarche J, Palmero A, Fernández A, Lucas S (2014) On the formation of the porous structure in nanostructured a-Si coatings deposited by dc magnetron sputtering at oblique angles. Nanotechnology 25. https://doi.org/10.1088/0957-4484/25/35/355705

  88. Maiti N, Karmakar P, Barve UD, Bapat AV (2008) An evaporation system for film deposition using electron beam sources. J Phys Conf Ser 114. https://doi.org/10.1088/1742-6596/114/1/012049

  89. Bujji Babu M, Madhuri KV (2017) Structural, morphological and optical properties of electron beam evaporated WO 3 thin films. J Taibah Univ Sci 11:1232–1237. https://doi.org/10.1016/j.jtusci.2016.12.003

    Article  Google Scholar 

  90. Sivakumar R, Gopalakrishnan R, Jayachandran M, Sanjeeviraja C (2007) Preparation and characterization of electron beam evaporated WO3 thin films. Opt Mater (Amst) 29:679–687. https://doi.org/10.1016/j.optmat.2005.11.017

    Article  CAS  Google Scholar 

  91. Motohiro T, Taga Y (1989) Thin film retardation plate by oblique deposition. Appl Opt 28:2466–2482. https://doi.org/10.1364/ao.28.002466

    Article  CAS  PubMed  Google Scholar 

  92. Hara K, Kamiya M, Hashimoto T, Okamoto K, Fujiwara H (1988) Columnar structure of obliquely deposited iron films prepared at low substrate temperatures. Thin Solid Films 158:239–244. https://doi.org/10.1016/0040-6090(88)90026-0

    Article  CAS  Google Scholar 

  93. Sarkar S, Pradhan SK, Jeevitha M (2019) Factors influencing the nanostructure of obliquely deposited thin films. Surf Eng 35:227–233. https://doi.org/10.1080/02670844.2018.1458490

    Article  CAS  Google Scholar 

  94. Barranco A, Borras A, Gonzalez-Elipe AR, Palmero A (2016) Perspectives on oblique angle deposition of thin films: from fundamentals to devices. Prog Mater Sci 76:59–153. https://doi.org/10.1016/j.pmatsci.2015.06.003

    Article  CAS  Google Scholar 

  95. Tait RN, Smy T, Brett MJ (1993) Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226:196–201. https://doi.org/10.1016/0040-6090(93)90378-3

    Article  CAS  Google Scholar 

  96. Nakhodkin NG, Bardamid AF, Novoselskaya AI (1984) Effects of the angle of deposition on short-range order in amorphous germanium. Thin Solid Films 112:267–277. https://doi.org/10.1016/0040-6090(84)90217-7

    Article  CAS  Google Scholar 

  97. Kivaisi RT (1982) Optical properties of obliquely evaporated aluminium films. Thin Solid Films 97:153–163. https://doi.org/10.1016/0040-6090(82)90224-3

    Article  CAS  Google Scholar 

  98. Svensson SP, Andersson TG (1982) Film thickness distribution at oblique evaporation. J Vac Sci Technol 20:245–247. https://doi.org/10.1116/1.571275

    Article  CAS  Google Scholar 

  99. Nakhodkin NG, Shaldervan AI (1972) Effect of vapour incidence angles on profile and properties of condensed films. Thin Solid Films 10:109–122. https://doi.org/10.1016/0040-6090(72)90276-3

    Article  CAS  Google Scholar 

  100. Robbie K, Friedrich LJ, Dew SK, Smy T, Brett MJ (1995) Fabrication of thin films with highly porous microstructures. J Vac Sci Technol A Vacuum, Surfaces, Film 13:1032–1035. https://doi.org/10.1116/1.579579

    Article  CAS  Google Scholar 

  101. Ashrit P (2017) Introduction to transition metal oxides and thin films

  102. Azzam RMA (1992) Chiral thin solid films: method of deposition and applications. Appl Phys Lett 61:3118–3120. https://doi.org/10.1063/1.107979

    Article  Google Scholar 

  103. Messier R, Gehrke T, Frankel C, Venugopal VC, Otaño W, Lakhtakia A (1997) Engineered sculptured nematic thin films. J Vac Sci Technol A Vacuum, Surfaces, Film 15:2148–2152. https://doi.org/10.1116/1.580621

    Article  CAS  Google Scholar 

  104. Robbie K, Brett MJ, Lakhtakia A (1995) First thin film realization of a helicoidal bianisotropic medium. J Vac Sci Technol A Vacuum, Surfaces, Film 13:2991–2993. https://doi.org/10.1116/1.579626

    Article  CAS  Google Scholar 

  105. Ye DX, Zhao YP, Yang GR, Zhao YG, Wang GC, Lu TM (2002) Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition. Nanotechnology 13:615–618. https://doi.org/10.1088/0957-4484/13/5/314

    Article  Google Scholar 

  106. Harris KD, Westra KL, Brett MJ (2001) Fabrication of perforated thin films with helical and chevron pore shapes. Electrochem Solid-State Lett 4:39–42. https://doi.org/10.1149/1.1371255

    Article  Google Scholar 

  107. Malac M, Egerton RF (2001) Observations of the microscopic growth mechanism of pillars and helices formed by glancing-angle thin-film deposition. J Vac Sci Technol A Vacuum, Surfaces, Film 19:158–166. https://doi.org/10.1116/1.1326940

    Article  CAS  Google Scholar 

  108. Smy T, Vick D, Brett MJ et al (2000) Three-dimensional simulation of film microstructure produced by glancing angle deposition. J Vac Sci Technol A Vacuum, Surfaces, Film 18:2507. https://doi.org/10.1116/1.1286394

    Article  CAS  Google Scholar 

  109. Sobahan KMA, Park YJ, Kim JJ, Shin YS, Kim JB, Hwangbo CK (2010) Nanostructured optical thin films fabricated by oblique angle deposition. Adv Nat Sci Nanosci Nanotechnol 1. https://doi.org/10.1088/2043-6262/1/4/045005

  110. Zhu H, Cao W, Larsen GK, Toole R, Zhao Y (2012) Tilting angle of nanocolumnar films fabricated by oblique angle deposition. J Vac Sci Technol B, Nanotechnol Microelectron Mater Process Meas Phenom 30:030606. https://doi.org/10.1116/1.4710999

    Article  CAS  Google Scholar 

  111. Hawkeye MM, Brett MJ (2007) Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films. J Vac Sci Technol A Vacuum, Surfaces, Film 25:1317. https://doi.org/10.1116/1.2764082

    Article  CAS  Google Scholar 

  112. Sit JC, Vick D, Robbie K, Brett MJ (1999) Thin film microstructure control using glancing angle deposition by sputtering. J Mater Res 14:1197–1199. https://doi.org/10.1557/JMR.1999.0162

    Article  CAS  Google Scholar 

  113. Robbie K, Brett MJ (1997) Sculptured thin films and glancing angle deposition: Growth mechanics and applications. J Vac Sci Technol A Vacuum, Surfaces, Film 15:1460–1465. https://doi.org/10.1116/1.580562

    Article  CAS  Google Scholar 

  114. Pihosh Y, Turkevych I, Mawatari K, Asai T, Hisatomi T, Uemura J, Tosa M, Shimamura K, Kubota J, Domen K, Kitamori T (2014) Nanostructured WO 3 /BiVO 4 photoanodes for efficient photoelectrochemical water splitting. Small 10:3692–3699. https://doi.org/10.1002/smll.201400276

    Article  CAS  PubMed  Google Scholar 

  115. Horprathum M, Eiamchai P, Kaewkhao J et al (2014) Fabrication of nanostructure by physical vapor deposition with glancing angle deposition technique and its applications. AIP Conf Proc 1617:7–11. https://doi.org/10.1063/1.4897091

    Article  CAS  Google Scholar 

  116. Zhao Y, Ye D, Wang G-C, Lu T-M (2003) Designing nanostructures by glancing angle deposition. Nanotub Nanowires 5219:59. https://doi.org/10.1117/12.505253

    Article  Google Scholar 

  117. Kennedy SR, Brett MJ, Toader O, John S (2002) Fabrication of tetragonal square spiral photonic crystals. Nano Lett 2:59–62. https://doi.org/10.1021/nl015635q

    Article  CAS  Google Scholar 

  118. Yuan J, Wang B, Wang H, Chai Y, Jin Y, Qi H, Shao J (2018) Electrochromic behavior of WO 3 thin films prepared by GLAD. Appl Surf Sci 447:471–478. https://doi.org/10.1016/j.apsusc.2018.03.248

    Article  CAS  Google Scholar 

  119. González-García L, González-Valls I, Lira-Cantu M, Barranco A, González-Elipe AR (2011) Aligned TiO 2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells. Energy Environ Sci 4:3426–3435. https://doi.org/10.1039/c0ee00489h

    Article  CAS  Google Scholar 

  120. Vitrey A, Alvarez R, Palmero A, González MU, García-Martín JM (2017) Fabrication of black-gold coatings by glancing angle deposition with sputtering. Beilstein J Nanotechnol 8:434–439. https://doi.org/10.3762/bjnano.8.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Charles C, Martin N, Devel M (2015) Optical properties of nanostructured WO3 thin films by GLancing Angle Deposition: comparison between experiment and simulation. Surf Coat Technol 276:136–140. https://doi.org/10.1016/j.surfcoat.2015.06.051

    Article  CAS  Google Scholar 

  122. Beydaghyan G, Renaud JLM, Bader G, Ashrit PV (2008) Enhanced electrochromic properties of heat treated nanostructured tungsten trioxide thin films. J Mater Res 23:274–280. https://doi.org/10.1557/jmr.2008.0037

    Article  CAS  Google Scholar 

  123. Ollitrault J, Martin N, Rauch JY, Sanchez JB, Berger F (2015) Improvement of ozone detection with GLAD WO3 films. Mater Lett 155:1–3. https://doi.org/10.1016/j.matlet.2015.04.099

    Article  CAS  Google Scholar 

  124. Sanchez-Herencia AJ (2007) Water based colloidal processing of ceramic laminates. Key Eng Mater 333:39–48. https://doi.org/10.4028/www.scientific.net/kem.333.39

    Article  CAS  Google Scholar 

  125. (1991) ADVANCED. 3:6940

  126. (1982) Lithography tools are in a state of continual change. Advances in resolution and alignment accuracy have extended the capability of optical lithography to linewidths of 1.5 Ixm and a combination of mirror optics, deep UV illumination and step and repeat e. 90:6090

  127. Avellaneda CO, Dahmouche K, Bulhões LOS, Pawlicka A (2000) Characterization of an all Sol-Gel electrochromic device WO3/ormolyte/CeO2-TiO2. J Sol-Gel Sci Technol 19:447–451. https://doi.org/10.1023/A:1008751630771

    Article  CAS  Google Scholar 

  128. Wu L, Yang D, Fei L, Huang Y, Wu F, Sun Y, Shi J, Xiang Y (2017) Dip-coating process engineering and performance optimization for three-state electrochromic devices. Nanoscale Res Lett 12:390. https://doi.org/10.1186/s11671-017-2163-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. van Stam J, Van Fraeyenhoven P, Andersén M, Moons E (2016) Comparing morphology in dip-coated and spin-coated polyfluorene:fullerene films. Org Photovoltaics XVII 9942:99420D. https://doi.org/10.1117/12.2237819

    Article  Google Scholar 

  130. Badilescu S, Ashrit PV (2003) Study of sol-gel prepared nanostructured WO3 thin films and composites for electrochromic applications. Solid State Ionics 158:187–197. https://doi.org/10.1016/S0167-2738(02)00764-6

    Article  CAS  Google Scholar 

  131. Djaoued Y, Balaji S (2012) Brüning R (2012) Electrochromic devices based on porous tungsten oxide thin films. J Nanomater. https://doi.org/10.1155/2012/674168

  132. Xu H, Gao J, Li M, Zhao Y, Zhang M, Zhao T, Wang L, Jiang W, Zhu G, Qian X, Fan Y, Yang J, Luo W (2019) Mesoporous WO 3 nanofibers with crystalline framework for high-performance acetone sensing. Front Chem 7:1–11. https://doi.org/10.3389/fchem.2019.00266

    Article  CAS  Google Scholar 

  133. Sone BT, Mailu SN, Malwela T, et al (2014) Electrochromism in self-assembled porous thin films of hexagonal tungsten trioxide microspheres prepared by aqueous chemical growth. Int J Electrochem Sci

  134. Balaji S, Djaoued Y, Albert AS, Brüning R, Beaudoin N, Robichaud J (2011) Porous orthorhombic tungsten oxide thin films: synthesis, characterization, and application in electrochromic and photochromic devices. J Mater Chem 21:3940–3948. https://doi.org/10.1039/c0jm03773g

    Article  CAS  Google Scholar 

  135. Kirss RU, Meda L (1998) Mocvd Wo3. Appl Organomet Chem 12:155–160

    Article  CAS  Google Scholar 

  136. Blackman CS, Parkin IP (2005) Atmospheric pressure chemical vapor deposition of crystalline monoclinic WO3 and WO3-x thin films from reaction of WCl6 with O-containing solvents and their photochromic and electrochromic properties. Chem Mater 17:1583–1590. https://doi.org/10.1021/cm0403816

    Article  CAS  Google Scholar 

  137. Davazoglou D, Dritsas T (2001) Fabrication and calibration of a gas sensor based on chemically vapor deposited WO3 films on silicon substrates: application to H2 sensing. Sensors Actuators B Chem 77:359–362. https://doi.org/10.1016/S0925-4005(01)00734-1

    Article  CAS  Google Scholar 

  138. Meda L, Breitkopf RC, Haas TE, Kirss RU (2002) Investigation of electrochromic properties of nanocrystalline tungsten oxide thin film. Thin Solid Films 402:126–130. https://doi.org/10.1016/S0040-6090(01)01598-X

    Article  CAS  Google Scholar 

  139. Sen LY, Tsai TH, Tien SW (2013) Atmospheric pressure plasma jet-synthesized electrochromic organomolybdenum oxide thin films for flexible electrochromic devices. Thin Solid Films 529:248–252. https://doi.org/10.1016/j.tsf.2012.09.033

    Article  CAS  Google Scholar 

  140. White CM, Gillaspie DT, Whitney E et al (2009) Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition. Thin Solid Films 517:3596–3599. https://doi.org/10.1016/j.tsf.2009.01.033

    Article  CAS  Google Scholar 

  141. Dillon AC, Mahan AH, Deshpande R, Parilla PA, Jones KM, Lee SH (2008) Metal oxide nano-particles for improved electrochromic and lithium-ion battery technologies. Thin Solid Films 516:794–797. https://doi.org/10.1016/j.tsf.2007.06.177

    Article  CAS  Google Scholar 

  142. Ivanova T, Gesheva KA, Popkirov G, Ganchev M, Tzvetkova E (2005) Electrochromic properties of atmospheric CVD MoO3 and MoO 3-WO3 films and their application in electrochromic devices. Mater Sci Eng B Solid-State Mater Adv Technol 119:232–239. https://doi.org/10.1016/j.mseb.2004.12.084

    Article  CAS  Google Scholar 

  143. Cruz-Leal M, Goiz O, Chávez F et al (2019) Study of the thermal annealing on structural and morphological properties of high-porosity A-WO3 films synthesized by HFCVD. Nanomaterials 9. https://doi.org/10.3390/nano9091298

  144. Rao MC, Shekhawat MS (2013) A brief survey on basic properties of thin films for device application. Int J Mod Phys Conf Ser 22:576–582. https://doi.org/10.1142/s2010194513010696

    Article  CAS  Google Scholar 

  145. Piegari A, Masetti E (1985) Thin film thickness measurement: a comparison of various techniques. Thin Solid Films 124:249–257. https://doi.org/10.1016/0040-6090(85)90273-1

    Article  CAS  Google Scholar 

  146. Yoshino H, Abbas A, Kaminski PM, Smith R, Walls JM, Mansfield D (2017) Measurement of thin film interfacial surface roughness by coherence scanning interferometry. J Appl Phys 121:105303. https://doi.org/10.1063/1.4978066

    Article  CAS  Google Scholar 

  147. Fercher AF (1996) Ptical oherence omography. J Biomed Opt 1:157–173

    Article  CAS  Google Scholar 

  148. Groot P De 9 Coherence Scanning Interferometry

  149. Beaurepaire E, Boccara AC, Lebec M et al (1998) Full-field optical coherence microscopy. Opt Lett 23:244. https://doi.org/10.1364/ol.23.000244

    Article  CAS  PubMed  Google Scholar 

  150. O’Connell D, Cox LJ, Hyland WB, McMahon SJ, Reuter S, Graham WG, Gans T, Currell FJ (2011) Cold atmospheric pressure plasma jet interactions with plasmid DNA. Appl Phys Lett 98:2011–2014. https://doi.org/10.1063/1.3521502

    Article  CAS  Google Scholar 

  151. de Groot P, Colonna de Lega X, Kramer J, Turzhitsky M (2002) Determination of fringe order in white-light interference microscopy. Appl Opt 41:4571–4578. https://doi.org/10.1364/ao.41.004571

    Article  PubMed  Google Scholar 

  152. Kim S-W, Kim G-H (1999) Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry. Appl Opt 38:5968–5973. https://doi.org/10.1364/ao.38.005968

    Article  CAS  PubMed  Google Scholar 

  153. Ghim Y-S, Kim S-W (2006) Thin-film thickness profile and its refractive index measurements by dispersive white-light interferometry. Opt Express 14:11885–11891. https://doi.org/10.1364/oe.14.011885

    Article  PubMed  Google Scholar 

  154. Ghim YS, Kim SW (2009) Spectrally resolved white-light interferometry for 3D inspection of a thin-film layer structure. Appl Opt 48:799–803. https://doi.org/10.1364/AO.48.000799

    Article  CAS  PubMed  Google Scholar 

  155. Kim J, Kim K, Pahk HJ (2017) Thickness measurement of a transparent thin film using phase change in white-light phase-shift interferometry. Curr Opt Photon 1:505–513. https://doi.org/10.3807/COPP.2017.1.5.505

    Article  CAS  Google Scholar 

  156. Maniscalco B, Kaminski PM, Walls JM (2014) Thin film thickness measurements using scanning white light interferometry. Thin Solid Films 550:10–16. https://doi.org/10.1016/j.tsf.2013.10.005

    Article  CAS  Google Scholar 

  157. Yu Y, Mansfield D (2015) Characterisation of thin films using a coherence scanning interferometry. J Mater Sci Chem Eng 03:15–21. https://doi.org/10.4236/msce.2015.31003

    Article  CAS  Google Scholar 

  158. Rokosz K, Hryniewicz T, Matỳsek D et al (2016) SEM, EDS and XPS analysis of the coatings obtained on titanium after plasma electrolytic oxidation in electrolytes containing copper nitrate. Materials (Basel) 9:9–16. https://doi.org/10.3390/ma9050318

    Article  CAS  Google Scholar 

  159. Rajora OS, Curzon AE (1985) A simple method for the determination of film thickness from electron image contrast in a scanning electron microscope. Thin Solid Films 123:235–238. https://doi.org/10.1016/0040-6090(85)90163-4

    Article  CAS  Google Scholar 

  160. Ng FL, Wei J, Lai FK, Goh KL (2006) Metallic thin film depth measurements by X-ray microanalysis. Appl Surf Sci 252:3972–3976. https://doi.org/10.1016/j.apsusc.2005.09.038

    Article  CAS  Google Scholar 

  161. Pascual R (1990) Dispersive Spectroscopy T E C H N I Q U E in a S C a N N I N G. 185:279–286

  162. Habiger KW, Stein C (1992) Thickness measurements of thin films: comparison of techniques using characteristic X-ray line ratio techniques. Thin Solid Films 215:108–114. https://doi.org/10.1016/0040-6090(92)90710-S

    Article  CAS  Google Scholar 

  163. Libo Z, Shengxiang B, Rong W, et al (2009) Thin film thickness measurement using electron probe microanalyzer. 2009 Int Conf Appl Supercond Electromagn Devices, ASEMD 2009 142–144. https://doi.org/10.1109/ASEMD.2009.5306671

  164. Mathia T, Zahouani H, Rousseau J, Le Bosse JC (1995) Functional significance of different techniques for surface morphology measurements. Int J Mach Tools Manuf 35:195–202. https://doi.org/10.1016/0890-6955(94)P2373-N

    Article  Google Scholar 

  165. ARTECH HOUSE USA : Optical measurement techniques and applications. https://us.artechhouse.com/Optical-Measurement-Techniques-and-Applications-P120.aspx. Accessed 25 فبراير 2021

  166. McNeil JR, Wei LJ, Al-Jumaily GA et al (1985) Surface smoothing effects of thin film deposition? Appl Opt 24:480. https://doi.org/10.1364/ao.24.000480

    Article  CAS  PubMed  Google Scholar 

  167. Wyant JC (2013) Computerized interferometric surface measurements [Invited]. Appl Opt 52:1–8. https://doi.org/10.1364/AO.52.000001

    Article  PubMed  Google Scholar 

  168. Wyant JC (2006) Advances in interferometric surface measurement. ICO20 Opt Dev Instrum 6024:602401. https://doi.org/10.1117/12.666802

    Article  Google Scholar 

  169. Creath K, Wyant JC (1990) Absolute measurement of surface roughness. Appl Opt 29:3823–3827. https://doi.org/10.1364/ao.29.003823

    Article  CAS  PubMed  Google Scholar 

  170. Quan C, Wang SH, Tay CJ (2006) Nanoscale surface deformation inspection using FFT and phase-shifting combined interferometry. Precis Eng 30:23–31. https://doi.org/10.1016/j.precisioneng.2005.03.001

    Article  Google Scholar 

  171. Tien C-L, Yu K-C, Tsai T-Y, Lin CS, Li CY (2014) Measurement of surface roughness of thin films by a hybrid interference microscope with different phase algorithms. Appl Opt 53:H213–H219. https://doi.org/10.1364/ao.53.00h213

    Article  PubMed  Google Scholar 

  172. Ortel E, Polte J, Bernsmeier D, Eckhardt B, Paul B, Bergmann A, Strasser P, Emmerling F, Kraehnert R (2015) Pd/TiO2 coatings with template-controlled mesopore structure as highly active hydrogenation catalyst. Appl Catal A Gen 493:25–32. https://doi.org/10.1016/j.apcata.2014.12.044

    Article  CAS  Google Scholar 

  173. Yang Y, Fei H, Ruan G, Tour JM (2015) Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv Mater 27:3175–3180. https://doi.org/10.1002/adma.201500894

    Article  CAS  Google Scholar 

  174. Ortel E, Sokolov S, Zielke C, Lauermann I, Selve S, Weh K, Paul B, Polte J, Kraehnert R (2012) Supported mesoporous and hierarchical porous Pd/TiO 2 catalytic coatings with controlled particle size and pore structure. Chem Mater 24:3828–3838. https://doi.org/10.1021/cm301081w

    Article  CAS  Google Scholar 

  175. Xiao J, Han L, Zhu L, Lv S, Shi J, Wei H, Xu Y, Dong J, Xu X, Xiao Y, Li D, Wang S, Luo Y, Li X, Meng Q (2014) A thin pristine non-triarylamine hole-transporting material layer for efficient CH3NH3PbI3 perovskite solar cells. RSC Adv 4:32918–32923. https://doi.org/10.1039/c4ra05199h

    Article  CAS  Google Scholar 

  176. Hotta K, Yamaguchi A, Teramae N (2012) Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing. ACS Nano 6:1541–1547. https://doi.org/10.1021/nn204494z

    Article  CAS  PubMed  Google Scholar 

  177. Liu R, Antoniou A (2013) A relationship between the geometrical structure of a nanoporous metal foam and its modulus. Acta Mater 61:2390–2402. https://doi.org/10.1016/j.actamat.2013.01.011

    Article  CAS  Google Scholar 

  178. Soler-Illia GJAA, Angelomé PC, Fuertes MC, Grosso D, Boissiere C (2012) Critical aspects in the production of periodically ordered mesoporous titania thin films. Nanoscale 4:2549–2566. https://doi.org/10.1039/c2nr11817c

    Article  CAS  PubMed  Google Scholar 

  179. Klotz M, Rouessac V, Rébiscoul D, Ayral A, van der Lee A (2006) Adsorption-desorption isotherms of nanoporous thin films measured by X-ray reflectometry. Thin Solid Films 495:214–218. https://doi.org/10.1016/j.tsf.2005.08.168

    Article  CAS  Google Scholar 

  180. Clark GL, Liu CH (1957) Quantitative determination of porosity by X-ray absorption. Anal Chem 29:1539–1541. https://doi.org/10.1021/ac60130a048

    Article  CAS  Google Scholar 

  181. Walker CT, Mogensen M (1987) Mogensen 2 ’. 149:121–131

  182. Dourdain S, Bardeau JF, Colas M, Smarsly B, Mehdi A, Ocko BM, Gibaud A (2005) Determination by x-ray reflectivity and small angle x-ray scattering of the porous properties of mesoporous silica thin films. Appl Phys Lett 86:1–3. https://doi.org/10.1063/1.1887821

    Article  CAS  Google Scholar 

  183. Wu WL, Wallace WE, Lin EK, Lynn GW, Glinka CJ, Ryan ET, Ho HM (2000) Properties of nanoporous silica thin films determined by high-resolution x-ray reflectivity and small-angle neutron scattering. J Appl Phys 87:1193–1200. https://doi.org/10.1063/1.371997

    Article  CAS  Google Scholar 

  184. Ortel E, Hertwig A, Berger D, Esposito P, Rossi AM, Kraehnert R, Hodoroaba VD (2016) New approach on quantification of porosity of thin films via electron-excited X-ray spectra. Anal Chem 88:7083–7090. https://doi.org/10.1021/acs.analchem.6b00847

    Article  CAS  PubMed  Google Scholar 

  185. Gillet M, Aguir K, Bendahan M, Mennini P (2005) Grain size effect in sputtered tungsten trioxide thin films on the sensitivity to ozone. Thin Solid Films 484:358–363. https://doi.org/10.1016/j.tsf.2005.02.035

    Article  CAS  Google Scholar 

  186. Khojier K, Zolghadr S, Teimoori F, Goudarzi S (2020) Fabrication and characterization of porous WO3 thin film as a high accuracy cyclohexene sensor. Mater Sci Semicond Process 118:105220. https://doi.org/10.1016/j.mssp.2020.105220

    Article  CAS  Google Scholar 

  187. Tan Y, Lei Y (2020) Atomic layer deposition of Rh nanoparticles on WO3 thin film for CH4 gas sensing with enhanced detection characteristics. Ceram Int 46:9936–9942. https://doi.org/10.1016/j.ceramint.2019.12.094

    Article  CAS  Google Scholar 

  188. Castillo C, Cabello G, Chornik B et al (2020) Characterization of photochemically grown Pd loaded WO3 thin films and its evaluation as ammonia gas sensor. J Alloys Compd 825:154166. https://doi.org/10.1016/j.jallcom.2020.154166

    Article  CAS  Google Scholar 

  189. Han Z, Ren J, Zhou J, Zhang S, Zhang Z, Yang L, Yin C (2020) Multilayer porous Pd-WO3 composite thin films prepared by sol-gel process for hydrogen sensing. Int J Hydrog Energy 45:7223–7233. https://doi.org/10.1016/j.ijhydene.2019.12.149

    Article  CAS  Google Scholar 

  190. Wang C, Yan Y, Du D et al (2020) WO3-based slippery liquid-infused porous surfaces with long-term stability. ACS Appl Mater Interfaces 12:29767–29777. https://doi.org/10.1021/acsami.0c05315

    Article  CAS  PubMed  Google Scholar 

  191. Jadwiszczak M, Jakubow-Piotrowska K, Kedzierzawski P, Bienkowski K, Augustynski J (2020) Highly efficient sunlight-driven seawater splitting in a photoelectrochemical cell with chlorine evolved at nanostructured WO3 photoanode and hydrogen stored as hydride within metallic cathode. Adv Energy Mater 10:1–8. https://doi.org/10.1002/aenm.201903213

    Article  CAS  Google Scholar 

  192. Pan J, Zheng R, Wang Y et al (2020) A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window. Sol Energy Mater Sol Cells 207:110337. https://doi.org/10.1016/j.solmat.2019.110337

    Article  CAS  Google Scholar 

  193. Bennett JM, Jahanmir J, Podlesny JC et al (1995) Scanning force microscope as a tool for studying optical surfaces. Appl Opt 34:213. https://doi.org/10.1364/ao.34.000213

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Our sincere thanks to All India Council for Technical Education (AICTE), New Delhi, for providing research funding (Ref: 839/RIFD/RPS/POLICY-1/2016-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyothi Gupta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, J., Shaik, H. & Kumar, K.N. A review on the prominence of porosity in tungsten oxide thin films for electrochromism. Ionics 27, 2307–2334 (2021). https://doi.org/10.1007/s11581-021-04035-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04035-8

Keywords

Navigation