Skip to main content

Advertisement

Log in

2.0-V flexible all-solid-state symmetric supercapacitor device with high electrochemical performance composed of MWCNTs-WO3-graphite sheet

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Simple and scalable fabrication of 3D nanostructure MWCNTs-WO3-graphite sheet with favorite flexibility and excellent mechanical strength is demonstrated. The flexible sheet was fabricated by employing second-hand and waste graphite electrodes through uniform adding of Zn nanoparticles (ZnNPs) into matrix of multi-walled carbon nanotubes-tungsten oxide-graphite sheet followed by selective dissolving of ZnNPs from the sheet. The fabrication condition of the MWCNTs-WO3-graphite sheet was optimized for its application in flexible supercapacitor device. The MWCNTs-WO3-graphite sheet exhibited attractive electrochemical behaviors including a low ohmic drop and a high areal capacitance of 114 mF cm−2 (103 F g−1) at 1.7 mA cm−2 (1.5 A g−1) in aqueous 1.0 M H2SO4 electrolyte. All-solid-state symmetric supercapacitor device based on flexible MWCNTs-WO3-graphite sheets showed a high energy density of 57 μWh cm−2, a high operation potential of 2.0 V, and significant cycling stability with 96% areal capacitance retention after 2000 continuous cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816–1300859

    Article  CAS  Google Scholar 

  2. Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825

    Article  CAS  Google Scholar 

  3. Gou J, Du Y, Xie S, Liu Y, Kong X (2019) Easily-prepared bimetallic metal phosphides as high-performance electrode materials for asymmetric supercapacitor and hydrogen evolution reaction. Inter J Hydrogen Energ 44:27214–27223

    Article  CAS  Google Scholar 

  4. Raman V, Mohan NV, Balakrishnan B, Rajmohan R, Rajangam V, Selvaraj A, Kim HJ (2020) Porous shiitake mushroom carbon composite with NiCo2O4 nanorod electrochemical characteristics for efficient supercapacitor applications. Ionics 26:345–354

    Article  CAS  Google Scholar 

  5. Wang F, Li Y, Cheng Z, Xu K, Zhan X, Wang Z, He J (2014) Construction of 3D V2O 5/hydrogenated-WO3 nanotrees on tungsten foil for high-performance pseudocapacitors. Phys Chem Chem Phys 16:12214–12220

    Article  CAS  PubMed  Google Scholar 

  6. Gou J, Xie S, Xu B (2020) Preparation of Ni-Co sulfides for high-performance supercapacitor application. Ionics 26:337–344

    Article  CAS  Google Scholar 

  7. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950

    Article  CAS  PubMed  Google Scholar 

  8. Peng S, Fan L, Rao W, Bai Z, Xu W, Xu J (2017) Bacterial cellulose membranes coated by polypyrrole/copper oxide as flexible supercapacitor electrodes. J Mater Sci 52:1930–1942

    Article  CAS  Google Scholar 

  9. Yong S, Shi J, Beeby S (2019) Wearable textile power module based on flexible ferroelectret and supercapacitor. Energy Technol 7:1800938–1800960

    Article  CAS  Google Scholar 

  10. Chang Z, Yang Y, Li M, Wang X, Wu Y (2014) Green energy storage chemistries based on neutral aqueous electrolytes. J Mater Chem A 2:10739–10755

    Article  CAS  Google Scholar 

  11. Li Y, Chen C (2017) Polyaniline/carbon nanotubes-decorated activated carbon fiber felt as high-performance, free-standing and flexible supercapacitor electrodes. J Mater Sci 52:12348–12357

    Article  CAS  Google Scholar 

  12. Shinde PA, Seo Y, Ray C, Jun SC (2019) Direct growth of WO3 nanostructures on multi-walled carbon nanotubes for high-performance flexible all-solid-state asymmetric supercapacitor. Electrochim Acta 308:231–242

    Article  CAS  Google Scholar 

  13. Yuksel R, Durucan C, Unalan HE (2016) Ternary nanocomposite SWNT/WO3/PANI thin film electrodes for supercapacitors. J Alloys Compd 658:183–189

    Article  CAS  Google Scholar 

  14. Wu X, Yao S (2017) Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices. Nano Energy 42:143–150

    Article  CAS  Google Scholar 

  15. Qiu M, Sun P, Shen L, Wang K, Song S, Yu X, Tan S, Zhao C, Mai W (2016) WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J Mater Chem A 4:7266–7273

    Article  CAS  Google Scholar 

  16. Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J (2015) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44:699–728

    Article  PubMed  Google Scholar 

  17. Yao J, Ji P, Sheng N, Guan F, Zhang M, Wang B, Chen S, Wang H (2018) Hierarchical core-sheath polypyrrole@ carbon nanotube/bacterial cellulose macrofibers with high electrochemical performance for all-solid-state supercapacitors. Electrochim Acta 283:1578–1588

    Article  CAS  Google Scholar 

  18. Song K, Wang X, Wang J, Zhang B, Yang R (2019) Hierarchical structure of CoFe2O4 core-shell microsphere coating on carbon fiber cloth for high-performance asymmetric flexible supercapacitor applications. Ionics 25:4905–4914

    Article  CAS  Google Scholar 

  19. Ghanashyam G, Jeong HK (2019) Synthesis of nitrogen-doped plasma treated graphite for supercapacitor applications. Chem Phys Lett 725:31–37

    Article  CAS  Google Scholar 

  20. Xiong C, Li B, Lin X, Liu H, Xu Y, Mao J, Duan C, Li T, Ni Y (2018) The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor. Compos Part B Eng 165:10–46

    Article  CAS  Google Scholar 

  21. Potphode DD, Sinha L, Shirage PM (2019) Redox additive enhanced capacitance: multi-walled carbon nanotubes/polyaniline nanocomposite based symmetric supercapacitors for rapid charge storage. Appl Surf Sci 469:162–172

    Article  CAS  Google Scholar 

  22. Kumar Nayak A, Kumar Das A, Pradhan D (2017) High performance solid-state asymmetric supercapacitor using green synthesized graphene−WO3 nanowires nanocomposite. ACS Sustain Chem Eng 5:10128–10138

    Article  CAS  Google Scholar 

  23. Susanti D, Stefanus Haryo N, Nisfu H, Nugroho EP, Purwaningsih H, Kusuma GE, Shih SJ (2012) Comparison of the morphology and structure of WO3 nanomaterials synthesized by a sol-gel method followed by calcination or hydrothermal treatment. Front Chem Sci Eng 6:371–380

    Article  CAS  Google Scholar 

  24. Popova AN (2017) Crystallographic analysis of graphite by X-ray diffraction. Coke and Chemistry 60:361–365

    Article  Google Scholar 

  25. Made Joni I, Vanitha M, Camellia P, Balasubramanian N (2018) Augmentation of graphite purity from mineral resources and enhancing % graphitization using microwave irradiation: XRD and Raman studies. Diam Relat Mater 88:129–136

    Article  CAS  Google Scholar 

  26. Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45:1686–1695

    Article  CAS  Google Scholar 

  27. Das R, Abd Hamid SB, Eaqub Ali M, Ramakrishna S, Yongzhi W (2015) Carbon nanotubes characterization by X-ray powder diffraction–a review. Curr Nanosci 11:23–35

    Article  Google Scholar 

  28. Altenhofen Da Silva M, Adeodato Vieira MG, Gomes Maumoto AC, Beppu MM (2011) Polyvinyl chloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid. Polym Test 30:478–484

    Article  CAS  Google Scholar 

  29. Ramesh S, Yi LJ (2009) FTIR spectra of plasticized high molecular weight PVC–LiCF 3 SO 3 electrolytes. Ionics 15:413–420

    Article  CAS  Google Scholar 

  30. Da Silva MA, Vieira MGA, Maçumoto ACG, Beppu MM (2011) Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid. Polym Test 30:478–484

    Article  CAS  Google Scholar 

  31. Ramirez FCR, Ramakrishnan P, Flores-Payag ZP, Shanmugam S, Binag CA (2017) Polyaniline and carbon nanotube coated pineapple-polyester blended fabric composites as electrodes for supercapacitors. Synth Met 230:65–72

    Article  CAS  Google Scholar 

  32. Li X, Tang Y, Song J, Yang W, Wang M, Zhu C, Zhao W, Zheng J, Lin Y (2018) Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 129:236–244

    Article  CAS  Google Scholar 

  33. Periasamy P, Krishnakumar T, Sathish M, Chavali M, Siril PF, Devarajan VP (2018) Structural and electrochemical studies of tungsten oxide (WO 3) nanostructures prepared by microwave assisted wet-chemical technique for supercapacitor. J Mater Sci Mater Electron 29:6157–6166

    Article  CAS  Google Scholar 

  34. Khanra P, Kuila T, Bae SH, Kim NH, Lee JH (2012) Electrochemically exfoliated graphene using 9-anthracene carboxylic acid for supercapacitor application. J Mater Chem 22:24403–24410

    Article  CAS  Google Scholar 

  35. Zhong Y, Shi T, Liu Z, Huang Y, Cheng S, Cheng C, Li X, Liao G, Tang Z (2017) Scalable fabrication of flexible solid-state asymmetric supercapacitors with a wide operation voltage utilizing printable carbon film electrodes. Energy Technol 5:656–664

    Article  CAS  Google Scholar 

  36. Bag S, Samanta A, Bhunia P, Raj CR (2016) Rational functionalization of reduced graphene oxide with imidazolium-based ionic liquid for supercapacitor application. Int J Hydrogen Energ 41:22134–22143

    Article  CAS  Google Scholar 

  37. Hai Z, Gao L, Zhang Q, Xu H, Cui D, Zhang Z, Tsoukalas D, Tang J, Yan S, Xue C (2016) Facile synthesis of core–shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors. Appl Surf Sci 361:57–62

    Article  CAS  Google Scholar 

  38. Yu P, Li Y, Yu X, Zhao X, Wu L, Zhang Q (2013) Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors. Langmuir 29:12051–12058

    Article  CAS  PubMed  Google Scholar 

  39. Faraji M, Moghadam PN, Hasanzadeh R (2016) Fabrication of binder-free polyaniline grafted multiwalled carbon nanotube/TiO2 nanotubes/Ti as a novel energy storage electrode for supercapacitor applications. Chem Eng J 304:841–851

    Article  CAS  Google Scholar 

  40. Gao L, Wang X, Xie Z, Song W, Wang L, Wu X, Qu F, Chen D, Shen G (2013) High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J Mater Chem A 1:7167–7173

    Article  CAS  Google Scholar 

  41. Huang M, Zhang Y, Li F, Zhang L, Wen Z, Liu Q (2014) Facile synthesis of hierarchical Co3O4@ MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors. J Power Sources 252:98–106

    Article  CAS  Google Scholar 

  42. Faraji M, Abedini A (2019) Fabrication of electrochemically interconnected MoO3/GO/MWCNTs/graphite sheets for high performance all-solid-state symmetric supercapacitor. Int J Hydrogen Energ 44:2741–2751

    Article  CAS  Google Scholar 

  43. Lai C, Sun Y, Lin B (2019) Synthesis of sandwich-like porous nanostructure of Co3O4-rGO for flexible all-solid-state high-performance asymmetric supercapacitors. Mater Today Energy 13:342–352

    Article  Google Scholar 

  44. Xie S, Gou J, Liu B, Liu C (2019) Nickel-cobalt selenide as high-performance and long-life electrode material for supercapacitor. J Colloid Interf Sci 540:306–314

    Article  CAS  Google Scholar 

  45. Liu H, Zhao D, Liu Y, Hu P, Wu X, Xia H (2019) Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@MoZn22 core-shell structures. Chem Eng J 373:485–492

    Article  CAS  Google Scholar 

  46. Xu Q, Wei C, Fan L, Rao W, Xu W, Liang H, Xu J (2018) Polypyrrole/titania-coated cotton fabrics for flexible supercapacitor electrodes. Appl Surf Sci 460:84–91

    Article  CAS  Google Scholar 

  47. Zeng R, Deng H, Xiao Y, Huang J, Yuan K, Chen Y (2018) Cross-linked graphene/carbon nanotube networks with polydopamine “glue” for flexible supercapacitors. Compos Commun 10:73–80

    Article  Google Scholar 

  48. Hou Y, Wen Z, Cui S, Ci S, Mao S, Chen J (2015) An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv Funct Mater 25:872–882

    Article  CAS  Google Scholar 

  49. Zhao D, Liu H, Wu X (2019) Bi-interface induced multi-active MCo2O4@MCo2S4@PPy (M=Ni, Zn) sandwich structure for energy storage and electrocatalysis. Nano Energy 57:363–370

    Article  CAS  Google Scholar 

  50. Luan Y, Nie G, Zhao X, Qiao N, Liu X, Wang H, Zhang X, Chen Y, Long YZ (2019) The integration of SnO2 dots and porous carbon nanofibers for flexible supercapacitors. Electrochim Acta 308:121–130

    Article  CAS  Google Scholar 

  51. Zhu M, Chen Q, Kan J, Tang J, Wei W, Lin J, Li S (2019) Cobalt oxide nanoparticles embedded in N-doped porous carbon as an efficient electrode for supercapacitor. Energy Technol 7:1800963–1801003

    Article  CAS  Google Scholar 

  52. Zhao D, Zhang Q, Chen W, Yi X, Liu S, Wang Q, Liu Y, Li J, Li X, Yu H (2017) Highly flexible and conductive cellulose-mediated PEDOT: PSS/MWCNT composite films for supercapacitor electrodes. ACS Appl Mater Inter 9:13213–13222

    Article  CAS  Google Scholar 

Download references

Funding

The office of vice chancellor of research of Urmia University provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Faraji.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MP4 2359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji, M., Khalilzadeh Soltanahmadi, R., Mohammadzadeh Aydisheh, H. et al. 2.0-V flexible all-solid-state symmetric supercapacitor device with high electrochemical performance composed of MWCNTs-WO3-graphite sheet. Ionics 26, 3003–3013 (2020). https://doi.org/10.1007/s11581-020-03502-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03502-y

Keywords

Navigation