Skip to main content

Advertisement

Log in

CoNx/NiFeOx/nitrogen-doping reduced graphene oxide nanocomposite derived from layered double hydroxide precursor as an efficient bifunctional electrocatalyst for oxygen electrocatalytic reactions

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The design of high efficiency, low-cost, and long-durability bifunctional electrocatalysts for the oxygen reduction/evolution reactions (ORR/OER) is crucial to some critical energy conversion and storage systems including fuel cells and water splitting. Herein, we developed a facile strategy to fabricate a CoNx/NiFeOx/nitrogen-doped reduced graphene oxide (N-RGO) nanocomposite derived from ternary CoNiFe-layered double hydroxides (LDHs)/polypyrrole (PPy)/RGO precursor for both ORR and OER. Based on the synergistic effect among different components, the resulting CoNx/NiFeOx/N-RGO nanocomposite exhibits not only superior ORR activities (a half-wave potential (E1/2) of 0.78 V vs. RHE and a J1600 rpm of − 4.80 mA cm−2 at 0.5 V vs. RHE) but also moderate OER activities (an overpotential η10 mA cm−2 of 372 mV) in alkaline media. The overall oxygen electrode performance of CoNx/NiFeOx/N-RGO demonstrates the smallest ΔE (EOER, 10 mA cm−2-EORR, − 3 mA cm−2) value of 0.82 V compared with the benchmark (commercial 20 wt% Pt/C and RuO2/C). Furthermore, CoNx/NiFeOx/N-RGO shows good durability in ORR and OER, making it promising applications for oxygen electrocatalysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang L, Gao H, Fang H, Wang S, Sun J (2016) Effect of methanol on the electrochemical behaviour and surface conductivity of niobium carbide-modified stainless steel for DMFC bipolar plate. Int J Hydrog Energy 41:14864

    CAS  Google Scholar 

  2. Gao H, Liao S, Zhang Y, Wang L, Zhang L (2017) Methanol tolerant core-shell RuFeSe@Pt/C catalyst for oxygen reduction reaction. Int J Hydrog Energy 42:20658

    CAS  Google Scholar 

  3. Wu S, Liu J, Cui B, Zhang Z, Song Y et al (2019) Fluorine-doped nickel cobalt oxide spinel as efficiently bifunctional catalyst for overall water splitting. Electrochim Acta 299:231

    CAS  Google Scholar 

  4. Kong F, Zhang S, Yin G, Wang Z, Du C, Chen G, Zhang N (2012) Electrochemical studies of Pt/Ir-IrO2 electrocatalyst as a bifunctional oxygen electrode. Int J Hydrog Energy 37:59

    CAS  Google Scholar 

  5. Gutsche C, Moeller CJ, Kinpper M, Borchert H, Parisi J, Plaggenborg T (2016) Synthesis, structure, and electrochemical stability of Ir-decorated RuO2 nanoparticles and Pt nanorods as oxygen catalysts. J Phys Chem C 120:1137

    CAS  Google Scholar 

  6. Tian G, Zhao M, Yu D, Kong X, Huang J, Zhang Q, Wei F (2014) Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 10:2251

    CAS  PubMed  Google Scholar 

  7. Li R, Wei Z, Gou X (2015) Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal 5:4133

    CAS  Google Scholar 

  8. Zhang J, Zhao Z, Xia X, Dai L (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444

    CAS  PubMed  Google Scholar 

  9. Jiang H, Li W, Li J et al (2019) Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER, 29 (2019) 1901949. Energy Environ Sci 12:322

    CAS  Google Scholar 

  10. Jia X, Meng Y, Zhang J, Song Y (2019) Nitrogen-doped OMCs with high electrocatalytic activity for oxygen reduction reaction. Inorg Chem Commun 107:107482

    CAS  Google Scholar 

  11. Wang L, Lin C, Huang D, Zhang F, Wang M, Jin J (2014) A comparative study of composition and morphology effect of NixCo1−x(OH)2 on oxygen evolution/reduction reaction. ACS Appl Mater Interfaces 6:10172

    CAS  PubMed  Google Scholar 

  12. He X, Tan J, Yin F, Chen B, Liang X, Li G, Jin H (2019) Well-dispersed co-Co3O4 hybrid nanoparticles on N-doped carbon nanosheets as a bifunctional electrocatalyst for oxygen evolution and reduction reactions. Int J Hydrog Energy 44:24184

    CAS  Google Scholar 

  13. Jia X, Zhang Y, Zhang L, Wang L, Zhou L (2019) Controllable synthesis and bi-functional electrocatalytic performance towards oxygen electrocatalytic reactions of Co3O4 nanoflakes/nitrogendoped modified CMK-3 nanocomposite. Inorg Chem Commun 108:107524

    CAS  Google Scholar 

  14. Zhang P, Cai Z, You S, Wang F, Zou J (2019) Cubic self-generated carbon nanotubes for protecting active sites on bifunctional co/CoOx schottky junctions to promote oxygen reduction/evolution reactions via efficient valence transition. J Colloid Interface Sci 557:580

    CAS  PubMed  Google Scholar 

  15. Li X, You S, Du J, Dai Y, Chen H, Cai Z, Ren N, Zou J (2019) ZIF-67-derived Co3O4@carbon protected by oxygen-buffering CeO2 as an efficient catalyst for boosting oxygen reduction/evolution reactions. J Mater Chem A 7:25853

    CAS  Google Scholar 

  16. Ganesan P, Prabu M, Sanetuntikul J, Shanmugam S (2015) Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: an efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal 5:3625

    CAS  Google Scholar 

  17. Shen M, Ruan C, Chen Y, Jiang C, Ai K, Lu L (2015) Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 7:1207

    CAS  PubMed  Google Scholar 

  18. Wen X, Bai L, Li M, Guan J (2019) Atomically dispersed cobalt- and nitrogen-codoped graphene toward bifunctional catalysis of oxygen reduction and hydrogen evolution reactions. ACS Sustain Chem Eng 7:9249

    CAS  Google Scholar 

  19. Luo Y, Wang Z, Fu Y, Jin C, Wei Q, Yang R (2016) In situ preparation of hollow Mo2C-C hybrid microspheres as bifunctional electrocatalysts for oxygen reduction and evolution reactions. J Mater Chem A 4:12583

    CAS  Google Scholar 

  20. Yang C, Zai S, Zhou Y, Du L, Jiang Q (2019) Fe3C-co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER. Adv Funct Mater 29:1901949

    Google Scholar 

  21. Wang J, Fu Y, Xu Y, Wu J, Tian J-H, Yang R (2016) Hierarchical NiCo2O4 hollow nanospheres as high efficient bi-functional catalysts for oxygen reduction and evolution reactions. Int J Hydrog Energy 41:8847

    CAS  Google Scholar 

  22. Zhao X, Fu Y, Wang J, Xu Y, Tian J, Yang R (2016) Ni-doped CoFe2O4 hollow nanospheres as efficient bi-functional catalysts. Electrochim Acta 201:172

    CAS  Google Scholar 

  23. Wang W, Liu Y, Fu J et al (2018) NiFe-LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. J Mater Chem A 6:14299

    CAS  Google Scholar 

  24. Fan G, Li F, Evans DG, Duan X (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 43:7040

    CAS  PubMed  Google Scholar 

  25. Huo R, Jiang W, Xu S, Zhang F, Hu J (2014) Co/CoO/CoFe2O4/G composites derived from layered double hydroxides towards mass production of efficient Pt-free electrocatalysts for oxygen reduction reaction. Nanoscale 6:203

    CAS  PubMed  Google Scholar 

  26. Gong M, Dai H (2015) A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res 8:23

    CAS  Google Scholar 

  27. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452

    CAS  PubMed  Google Scholar 

  28. Tang D, Liu J, Wu X, Liu R, Han X, Han Y, Huang H, Liu Y, Kang Z (2014) Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl Mater Interfaces 6:7918

    CAS  PubMed  Google Scholar 

  29. Chen R, Sun G, Yang C, Zhang L, Miao J, Tao H, Yang H, Chen J, Chen P, Liu B (2016) Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horiz 1:156

    CAS  Google Scholar 

  30. Wang Y, Wang Z, Wu X, Li M (2016) Synergistic effect between strongly coupled CoAl layered double hydroxides and graphene for the electrocatalytic reduction of oxygen. Electrochim Acta 192:196

    CAS  Google Scholar 

  31. Qian L, Lu Z, Xu T, Wu X, Tian Y, Li Y, Huo Z, Sun X, Duan X (2015) Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv Energy Mater 5:1500245

    Google Scholar 

  32. Zhan T, Zhang Y, Liu X, Lu S, Hou W (2016) NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. J Power Sources 333:53

    CAS  Google Scholar 

  33. Fang H, Zou W, Yan J et al (2018) Facile fabrication of Fe2O3 nanoparticles anchored on carbon nanotubes as high-performance anode for lithium-ion batteries. ChemElectroChem 5:2458

    CAS  Google Scholar 

  34. Fang H, Chen G, Wang L et al (2018) Facile fabrication of hierarchical film composed of co(OH)2@carbon nanotube core/sheath nanocables and its capacitive performance. RSC Adv 8:38550

    CAS  Google Scholar 

  35. Fang H, Zhang L, Xing Y et al (2018) Nanostructured manganese oxide films for high performance supercapacitors. Int J Electrochem Sci 13:8736

    CAS  Google Scholar 

  36. Fang H, Meng F, Chen G et al (2019) Sandwich-structured Fe3O4/graphene hybrid film for high-performance lithium-ion batteries. Int J Electrochem Sci 14:7937

    CAS  Google Scholar 

  37. Fang H, Meng F, Yan J, Wang L, Zhang Y (2019) Fe3O4 hard templating to assemble highly wrinkled graphene sheets into hierarchical porous film for compact capacitive energy storage. RSC Adv 9:20107

    CAS  Google Scholar 

  38. Wang Y, Zhang B, Li Y, Liu D, He X, Si Z (2014) Nitrogen-doped graphene-supported co/CoNx nanohybrid as a highly efficient electrocatalyst for oxygen reduction reaction in an alkaline medium. RSC Adv 4:62272

    CAS  Google Scholar 

  39. Zhang Y, Yao Q, Gao H, Wang L, Wang L, Zhang A, Song Y, Xia T (2014) Synthesis and electrochemical properties of hollow-porous MnO2-graphene micro-nano spheres for supercapacitor applications. Powder Technol 267:268

    CAS  Google Scholar 

  40. Zhao J, Chen J, Xu S, Shao M, Zhang Q, Wei F, Ma J, Wei M, Evans DG, Duan X (2014) Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv Funct Mater 24:2938

    CAS  Google Scholar 

  41. Zhang Y, Yao Q, Gao H, Zhang L, Wang L, Zhang A, Song Y, Wang L (2015) Synthesis and electrochemical performance of MnO2/BC composite as active materials for supercapacitors. J Anal Appl Pyrolysis 111:233

    CAS  Google Scholar 

  42. Zhang Y, Yao Q, Gao H, Wang L, Jia X, Zhang A, Song Y, Xia T, Dong H (2014) Facile synthesis and electrochemical performance of manganese dioxide doped by activated carbon, carbon nanofiber and carbon nanotube. Powder Technol 262:150

    CAS  Google Scholar 

  43. Zhang Y, Chang C, Jia X, Wang L et al (2020) Morphology-dependent NiMoO4/carbon composites for high performance supercapacitors. Inorg Chem Commun 111:107631

    CAS  Google Scholar 

  44. Zhang Y, Gao H, Jia X, Wang S et al (2018) NiMoO4 nanorods supported on nickel foam for high-performance supercapacitor electrode materials. J Renew Sustain Energy 10:054101

    Google Scholar 

  45. Song J, Ren Y, Wang H et al (2018) Core-shell co/CoNx@C nanoparticles enfolded by co-N doped carbon nanosheets as a highly efficient electrocatalyst for oxygen reduction reaction. Carbon 138:300

    CAS  Google Scholar 

  46. Gao Z, Wang J, Li Z, Yang W, Wang B, Hou M, He Y, Liu Q, Mann T, Yang P, Zhang M, Liu L (2011) Graphene nanosheet/Ni2+/Al3+ layered double hydroxide composite as a novel electrode for a supercapacitor. Chem Mater 23:3509

    CAS  Google Scholar 

  47. Cheng F, Su Y, Liang J, Tao Z, Chen J (2010) MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 22:898

    CAS  Google Scholar 

  48. Song F, Hu X (2014) Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun 5:4477

    CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the Doctoral Research start-up Fund of Zhengzhou University of Light Industry (2017BSJJ040), Project of National Science Foundation of China (No. 21671178), Joint project of National Science Foundation of China (No. U1704256).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Jia or Liming Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 6216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Zhang, Y., Guo, D. et al. CoNx/NiFeOx/nitrogen-doping reduced graphene oxide nanocomposite derived from layered double hydroxide precursor as an efficient bifunctional electrocatalyst for oxygen electrocatalytic reactions. Ionics 26, 1885–1894 (2020). https://doi.org/10.1007/s11581-020-03465-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03465-0

Keywords

Navigation