Skip to main content
Log in

Mastering high ion conducting of room-temperature all-solid-state lithium-ion batteries via safe phthaloyl starch-poly(vinylidene fluoride)–based polymer electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, an all-solid-state biomaterial electrolyte derived from phthaloyl starch and poly(vinylidene fluoride) (PVDF) was introduced. Phthaloyl starch (PS) was prepared with the starch and the phthalic anhydride via a chemical method. The introduction of C=O group through the starch esterification improved the migration of the lithium ions in the all-solid-state electrolyte membrane. The AC impedance test revealed that the addition of the phthaloyl starch promoted the conductivity of electrolytes, which can reach up to 2.04 × 10−4 S cm−1 at room temperature, and the electrochemical stability window (ESW) can achieve 4.20 V. Herein, the phthaloyl starch-PVDF–based electrolyte membrane possessed the lithium-ion transference number of 0.396. The half-cell Li/SPE/LiFePO4 had a better charge and discharge performance, that is, 93.9 mAh g−1 and 92.2 mAh g−1 after the 50th cycle at 0.5 C and at room temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun WW, Cai C, Tang X, Lv LP, Wang Y (2018) Carbon coated mixed-metal selenide microrod: bimetal-organic-framework derivation approach and applications for lithium-ion batteries. Chem Eng J 351:169–176. https://doi.org/10.1016/j.cej.2018.06.093

    Article  CAS  Google Scholar 

  2. Hassoun J, Lee DJ, Sun YK, Scrosati B (2011) A lithium ion battery using nanostructured Sn–C anode, LiFePO4 cathode and polyethylene oxide-based electrolyte. Solid State Ionics 202:36–39. https://doi.org/10.1016/j.ssi.2011.08.016

    Article  CAS  Google Scholar 

  3. Guo X, Cao X, Huang G, Tian Q, Sun H (2017) Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling. J Environ Manag 198:84–89. https://doi.org/10.1016/j.jenvman.2017.04.062

    Article  CAS  Google Scholar 

  4. Polu AR, Rhee HW, Jeevan Kumar Reddy M, Shanmugharaj AM, Ryu SH, Kim DK (2017) Effect of POSS-PEG hybrid nanoparticles on cycling performance of polyether-LiDFOB based solid polymer electrolytes for all solid-state Li-ion battery applications. J Ind Eng Chem 45:68–77. https://doi.org/10.1016/j.jiec.2016.09.004

    Article  CAS  Google Scholar 

  5. Wang Q, Song WL, Fan LZ, Shi Q (2015) Effect of polyacrylonitrile on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes with interpenetrating crosslinked network for flexible lithium ion batteries. J Power Sources 295:139–148. https://doi.org/10.1016/j.jpowsour.2015.06.152

    Article  CAS  Google Scholar 

  6. Cheng SHS, He KQ, Liu Y, Zha JW, Kamruzzaman M, Ma RLW, Dang ZM, Li RKY, Chung CY (2017) Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochim Acta 253:430–438. https://doi.org/10.1016/j.jpowsour.2015.06.152

    Article  CAS  Google Scholar 

  7. Shi QX, Xia Q, Xiang X, Ye YS, Peng HY, Xue ZG, Xie XL, Mai YW (2017) Self-assembled polymeric ionic liquid-functionalized cellulose nano-crystals: constructing 3D ion-conducting channels within ionic liquid-based composite polymer electrolytes. Chem-Eur J 23:11881–11890. https://doi.org/10.1002/chem.201702079

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Sun Z, Shi L, Lu S, Sun Z, Shi Y, Wu H, Zhang Y, Ding S (2019) Poly(ionic liquid)-polyethylene oxide semi-interpenetrating polymer network solid electrolyte for safe lithium metal batteries. Chem Eng J 375:129925. https://doi.org/10.1016/j.cej.2019.121925

    Article  CAS  Google Scholar 

  9. Chinnam PR, Zhang H, Wunder SL (2015) Blends of pegylated polyoctahedralsilsesquioxanes (POSS-PEG) and methyl cellulose as solid polymer electrolytes for lithium batteries. Electrochim Acta 170:191–201. https://doi.org/10.1016/j.electacta.2015.04.010

    Article  CAS  Google Scholar 

  10. Meabe L, Lago N, Rubatat L, Li C, Müller AJ, Sardon H, Armand M, Mecerreyes D (2017) Polycondensation as a versatile synthetic route to aliphatic polycarbonates for solid polymer electrolytes. Electrochim Acta 237:259–266. https://doi.org/10.1016/j.electacta.2017.03.217

    Article  CAS  Google Scholar 

  11. Meabe L, Huynh TV, Lago N, Sardon H, Li C, O’Dell LA, Armand M, Forsyth M, Mecerreyes D (2018) Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochim Acta 264:367–375. https://doi.org/10.1016/j.electacta.2018.01.101

    Article  CAS  Google Scholar 

  12. Liu Q, Li F, Lu H, Li M, Liu J, Zhang S, Sun Q, Xiong L (2018) Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles. Food Chem 242:256–263. https://doi.org/10.1016/j.foodchem.2017.09.071

    Article  CAS  PubMed  Google Scholar 

  13. Lee SY, Lee KY, Lee HG (2018) Effect of different pH conditions on the in vitro digestibility and physicochemical properties of citric acid-treated potato starch. Int J Biol Macromol 107:1235–1241. https://doi.org/10.1016/j.ijbiomac.2017.09.106

    Article  CAS  PubMed  Google Scholar 

  14. Yadav M, Nautiyal G, Verma A, Kumar M, Tiwari T, Srivastava N (2019) Electrochemical characterization of NaClO4–mixed rice starch as a cost-effective and environment-friendly electrolyte. Ionics 25:2693–2700. https://doi.org/10.1007/s11581-018-2794-x

    Article  CAS  Google Scholar 

  15. Hazarika BJ, Sit N (2016) Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch. Carbohydr Polym 140:269–278. https://doi.org/10.1016/j.carbpol.2015.12.055

    Article  CAS  PubMed  Google Scholar 

  16. Simi CK, Emilia Abraham T (2007) Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery. Bioprocess Biosyst Eng 30:173–180. https://doi.org/10.1007/s00449-007-0112-5

    Article  CAS  PubMed  Google Scholar 

  17. Lewicka K, Siemion P, Kurcok P (2015) Chemical modifications of starch: microwave effect. Int J Polym Sci 2015:1–10. https://doi.org/10.1155/2015/867697

    Article  CAS  Google Scholar 

  18. Teaca CA, Bodirlau R, Spiridon I (2013) Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films. Carbohydr Polym 93:307–315. https://doi.org/10.1016/j.carbpol.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  19. Lawal OS, Ogundiran OO, Awokoya K, Ogunkunle AO (2008) The low-substituted propylene oxide etherified plantain (Musa paradisiaca normalis) starch: characterization and functional parameters. Carbohydr Polym 74:717–724. https://doi.org/10.1016/j.carbpol.2008.04.039

    Article  CAS  Google Scholar 

  20. Ren L, Wang Q, Yan X, Tong J, Zhou J, Su X (2016) Dual modification of starch nanocrystals via crosslinking and esterification for enhancing their hydrophobicity. Food Res Int 87:180–188. https://doi.org/10.1016/j.foodres.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  21. Raina CS, Singh S, Bawa AS, Saxena DC (2006) Some characteristics of acetylated, cross-linked and dual modified Indian rice starches. Eur Food Res Technol 223:561–570. https://doi.org/10.1007/s00217-005-0239-z

    Article  CAS  Google Scholar 

  22. Tizzotti MJ, Sweedman MC, Tang D, Schaefer C, Gilbert RG (2011) New 1H NMR procedure for the characterization of native and modified food-grade starches. J Agric Food Chem 59:6913–6919. https://doi.org/10.1021/jf201209z

    Article  CAS  PubMed  Google Scholar 

  23. Namazi H, Fathi F, Dadkhah A (2011) Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles. Sci Iran 18:439–445. https://doi.org/10.1016/j.scient.2011.05.006

    Article  CAS  Google Scholar 

  24. Selvanathan V, Azzhari A, Halim AAA, Yahya R (2017) Ternary natural deep eutectic solvent (NADES) infused phthaloyl starch as cost efficient quasi-solid gel polymer electrolyte. Carbohydr Polym 167:210–218. https://doi.org/10.1016/j.carbpol.2017.03.023

    Article  CAS  PubMed  Google Scholar 

  25. Zhang G, Li Y, Gao A, Zhang Q, Cui J, Zhao S, Zhan X, Yan Y (2019) Bio-inspired underwater superoleophobic PVDF membranes for highly-efficient simultaneous removal of insoluble emulsified oils and soluble anionic dyes. Chem Eng J 369:576–587. https://doi.org/10.1016/j.cej.2019.03.089

    Article  CAS  Google Scholar 

  26. Liu Y, Xie H, Shi M (2016) Effect of ethanol-water solution on the crystallization of short chain amylose from potato starch. Starch 68:683–690. https://doi.org/10.1002/star.201500300

    Article  CAS  Google Scholar 

  27. Surendra Babu A, Parimalavalli R, Jagannadham K (2015) Chemical and structural properties of sweet potato starch treated with organic and inorganic acid. J Food Sci Technol 52:5745–5753. https://doi.org/10.1007/s13197-014-1650-x

    Article  CAS  PubMed  Google Scholar 

  28. Dankar I, Haddarah A, Omar FEL, Pujolà M, Sepulcre F (2018) Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chem 260:7–12. https://doi.org/10.1016/j.foodchem.2018.03.138

    Article  CAS  PubMed  Google Scholar 

  29. Singh HH, Khare N (2019) Improved performance of ferroelectric nanocomposite flexible film based triboelectric nanogenerator by controlling surface morphology, polarizability, and hydrophobicity. Energy 178:765–771. https://doi.org/10.1016/j.energy.2019.04.150

    Article  CAS  Google Scholar 

  30. Kabir E, Khatun M, Nasrin L, Raihan MJ, Rahman M (2017) Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites. J Phys D Appl Phys 50:163002–1630018. https://doi.org/10.1088/1361-6463/aa5f85

    Article  CAS  Google Scholar 

  31. Lanceros-Mendez S, Mano JF, Costa AM, Schmidt VH (2001) FTIR and DSC studies of mechanically deformed β-PVDF films. J Macromol Sci Phys B40:517–527. https://doi.org/10.1081/MB-100106174

    Article  CAS  Google Scholar 

  32. Tiwar S, Gaur A, Kumar C, Maiti P (2019) Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting. Energy 171:485–492. https://doi.org/10.1016/j.energy.2019.01.043

    Article  CAS  Google Scholar 

  33. Sun Y, Rohan R, Cai W, Wan X, Pareek K, Lin A, Yunfeng Z, Cheng H (2014) A Polyamide single-ion electrolyte membrane for application in lithium-ion batteries. Energy Technol 2:698–704. https://doi.org/10.1002/ente.201402041

    Article  CAS  Google Scholar 

  34. Liu B, Huang Y, Cao H, Zhao L, Huang Y, Song A, Lin Y, Li X, Wang M (2018) A novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries. J Membr Sci 545:140–149. https://doi.org/10.1016/j.memsci.2017.09.077

    Article  CAS  Google Scholar 

  35. He C, Liu J, Cui J, Li J, Wu X (2018) A gel polymer electrolyte based on polyacrylonitrile/organic montmorillonite membrane exhibiting dense structure for lithium ion battery. Solid State Ionics 315:102–110. https://doi.org/10.1016/j.ssi.2017.12.014

    Article  CAS  Google Scholar 

  36. Shi J, Yang Y, Shao H (2018) Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J Membr Sci 547:1–10. https://doi.org/10.1016/j.memsci.2017.10.033

    Article  CAS  Google Scholar 

  37. Takenaka N, Fujie T, Bouibes A, Yamada Y, Yamada A, Nagaoka M (2018) Microscopic formation mechanism of solid electrolyte interphase film in lithium-ion batteries with highly concentrated electrolyte. Phys Chem C 122:2564–2571. https://doi.org/10.1021/acs.jpcc.7b11650

    Article  CAS  Google Scholar 

  38. Wang A, Kadam S, Li H, Shi S, Qi Y (2018) Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Comput Mater 3:15–43. https://doi.org/10.1038/s41524-018-0064-0

    Article  CAS  Google Scholar 

  39. Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T (2006) Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater 18:2226–2229. https://doi.org/10.1002/adma.200502604

    Article  CAS  Google Scholar 

  40. Sakuda A, Hayashi A, Tatsumisago M (2010) Interfacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater 22:949–956. https://doi.org/10.1021/cm901819c

    Article  CAS  Google Scholar 

  41. Aurbach D, Markovsky B, Levi MD, Levi E, Schechter A, Moshkovich CY (1999) New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J Power Sources 81:95–111. https://doi.org/10.1016/S0378-7753(99)00187-1

    Article  Google Scholar 

  42. Winter M (2009) The solid electrolyte interphase-the most important and the least understood solid electrolyte in rechargeable Li batteries. Z Fur Phys Chem 223:1395–1406. https://doi.org/10.1524/zpch.2009.6086

    Article  CAS  Google Scholar 

  43. Verma P, Maire P, Novak P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55:6332–6341. https://doi.org/10.1016/j.electacta.2010.05.072

    Article  CAS  Google Scholar 

  44. Vetter J, Novak P, Wagner MR, Veit C, Besenhard JO MKC, Winter M, Wohlfahrt-Mehrens M (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147:269–281. https://doi.org/10.1016/j.jpowsour.2005.01.006

    Article  CAS  Google Scholar 

  45. Aurbach D, Ein-Ely Y, Zaban A (1994) The surface chemistry of lithium electrodes in alkyl carbonate solutions. J Electrochem Soc 141:L1–L3. https://doi.org/10.1149/1.2054718

    Article  CAS  Google Scholar 

  46. Herstedt M, Abraham DP, Kerr JB, Edström K (2004) X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade. Electrochim Acta 49:5097–5110. https://doi.org/10.1016/j.electacta.2004.06.021

    Article  CAS  Google Scholar 

  47. Lin J, Xu Y, Wang J, Zhang B, Wang C, He S, Wu J (2019) Preinserted Li metal porous carbon nanotubes with high coulombic efficiency for lithium-ion battery anodes. Chem Eng J 373:78–85. https://doi.org/10.1016/j.cej.2019.04.204

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported financially by the National Natural Science Foundation of China (grant number 21706043) and Synthesis and application of novel electrochemical biofunctional materials (grant number P183008061).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Libo Li or Huanyu Zheng.

Ethics declarations

Conflict of interest

There authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Li, L., Zhang, Y. et al. Mastering high ion conducting of room-temperature all-solid-state lithium-ion batteries via safe phthaloyl starch-poly(vinylidene fluoride)–based polymer electrolyte. Ionics 26, 1109–1117 (2020). https://doi.org/10.1007/s11581-019-03309-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03309-6

Keywords

Navigation