Skip to main content

Advertisement

Log in

Lithium-sulfur battery cathodes made of porous biochar support CoFe@NC metal nanoparticles derived from Prussian blue analogues

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li–S batteries are considered as candidates for the next-generation secondary batteries due to their high energy density (~ 1672 mAh g−1). However, poor conductivity and shuttle effect have become the major obstacles for their development. In the present investigation, we prepared porous biochar-coated metal nanoparticles CoFe@NC/PPC by loading the Prussian blue analogues onto the biomass pomelo peel (PP), followed by calcination. Both rich nitrogen-doped pore structure and CoFe nanoparticles can reduce the shuttle effect in the cycle, and biochar can enhance the conductivity of the sulfur cathode, promoting the complete reaction of sulfur. It is found that after being sulfur-injected and made into a button cell, it exhibits good electrochemical performance. The initial specific capacity was found to be close to 915.6 mAh g−1 at 1 C and it remained at 447.4 mAh g−1 after 500 cycles with a coulombic efficiency of 97.3%.

1. A CoFe metal particles coated nitrogen-doped porous carbon (CoFe@NC/PPC) derived from Prussian blue analogue/biomass.

2. Li–S batteries with S/CoFe@NC/PPC cathodes deliver good electrochemical performance.

3. The synergism between NC/PPC and CoFe reduces the shuttle effect and improves the performance of sulfur cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renew Sust Energ Rev 14:919–937

    Article  CAS  Google Scholar 

  2. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287

    Article  CAS  Google Scholar 

  3. Li D, Han F, Wang S, Cheng F, Sun Q, Li WC (2013) High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery. ACS Appl Mater Interfaces 5:2208–2213

    Article  CAS  Google Scholar 

  4. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  5. Kim KH, Jun Y-S, Gerbec JA, See KA, Stucky GD, Jung H-T (2014) Sulfur infiltrated mesoporous graphene–silica composite as a polysulfide retaining cathode material for lithium–sulfur batteries. Carbon 69:543–551

    Article  CAS  Google Scholar 

  6. Zhang J, Huang H, Bae J, Chung S-H, Zhang W, Manthiram A, Yu G (2018) Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: structure design and interfacial chemistry. Small Methods 2:1700279

    Article  CAS  Google Scholar 

  7. Li Z, Li C, Ge X, Ma J, Zhang Z, Li Q, Wang C, Yin L (2016) Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 23:15–26

    Article  CAS  Google Scholar 

  8. Wang J-G, Xie K, Wei B (2015) Advanced engineering of nanostructured carbons for lithium–sulfur batteries. Nano Energy 15:413–444

    Article  CAS  Google Scholar 

  9. Dominko R, Demir-Cakan R, Morcrette M, Tarascon J-M (2011) Analytical detection of soluble polysulphides in a modified Swagelok cell. Electrochem Commun 13:117–120

    Article  CAS  Google Scholar 

  10. Zhao S, Li C, Wang W, Zhang H, Gao M, Xiong X, Wang A, Yuan K, Huang Y, Wang F (2013) A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium–sulfur batteries. J Mater Chem A 1:3334

    Article  CAS  Google Scholar 

  11. Zhu L, Zhu W, Cheng X-B, Huang J-Q, Peng H-J, Yang S-H, Zhang Q (2014) Cathode materials based on carbon nanotubes for high-energy-density lithium–sulfur batteries. Carbon 75:161–168

    Article  CAS  Google Scholar 

  12. Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20:9821

    Article  CAS  Google Scholar 

  13. Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11:4288–4294

    Article  CAS  Google Scholar 

  14. Zhang J, Zhong HY, Zheng C, Xia Y, Liang C, Huang H, Gan YP, Tao XY, Zhang WK (2018) All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content. J Power Sources 391:73–79

    Article  CAS  Google Scholar 

  15. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed 50:5904–5908

    Article  CAS  Google Scholar 

  16. Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X (2017) Biomass derived carbon for energy storage devices. J Mater Chem A 5:2411–2428

    Article  CAS  Google Scholar 

  17. Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592

    Article  CAS  Google Scholar 

  18. Xia Y, Fang RY, Xiao Z, Huang H, Gan YP, Yan RJ, Lu XH, Liang C, Zhang J, Tao XY, Zhang WK (2017) Confining sulfur in N-doped porous carbon microspheres derived from microalgaes for advanced lithium–sulfur batteries. ACS Appl Mater Interfaces 9:23782–23791

    Article  CAS  Google Scholar 

  19. Xia Y, Zhong HY, Fang RY, Liang C, Xiao Z, Huang H, Gan YP, Zhang J, Tao XY, Zhang WK (2018) Biomass derived Ni(OH)2@porous carbon/sulfur composites synthesized by a novel sulfur impregnation strategy based on supercritical CO2 technology for advanced Li-S batteries. J Power Sources 378:73–80

    Article  CAS  Google Scholar 

  20. Gu X, Wang Y, Lai C, Qiu J, Li S, Hou Y, Martens W, Mahmood N, Zhang S (2014) Nano Res 8:129–139

    Article  CAS  Google Scholar 

  21. Seh ZW, Sun Y, Zhang Q, Cui Y (2016) Designing high-energy lithium–sulfur batteries. Chem Soc Rev 45:5605–5634

    Article  CAS  Google Scholar 

  22. Zhou G, Zhao Y, Manthiram A (2015) Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries. Adv Energy Mater 5:1402263

    Article  CAS  Google Scholar 

  23. Wang C, Su K, Wan W, Guo H, Zhou H, Chen J, Zhang X, Huang Y (2014) High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium–sulfur batteries. J Mater Chem A 2:5018–5023

    Article  CAS  Google Scholar 

  24. Zhang J, Shi Y, Ding Y, Peng LL, Zhang WK, Yu GH (2017) Adv Energy Mater 7:7

    Google Scholar 

  25. Qu Y, Zhang Z, Zhang X, Ren G, Lai Y, Liu Y, Li J (2015) Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries. Carbon 84:399–408

    Article  CAS  Google Scholar 

  26. Tao X, Wang J, Ying Z, Cai Q, Zheng G, Gan Y, Huang H, Xia Y, Liang C, Zhang W, Cui Y (2014) Strong sulfur binding with conducting magnéli-phase TinO2n–1nanomaterials for improving lithium–sulfur batteries. Nano Lett 14:5288–5294

    Article  CAS  Google Scholar 

  27. Rehman S, Tang T, Ali Z, Huang X, Hou Y (2017) Small 13

  28. Zhang J, Shi Y, Ding Y, Zhang W, Yu G (2016) In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium–sulfur battery. Nano Lett 16:7276–7281

    Article  CAS  Google Scholar 

  29. Lin H, Yang L, Jiang X, Li G, Zhang T, Yao Q, Zheng GW, Lee JY (2017) Energy Environ Sci 10:1476–1486

    Article  CAS  Google Scholar 

  30. Ma L, Wei S, Zhuang HL, Hendrickson KE, Hennig RG, Archer LA (2015) Hybrid cathode architectures for lithium batteries based on TiS2and sulfur. J Mater Chem A 3:19857–19866

    Article  CAS  Google Scholar 

  31. Sun Z, Zhang J, Yin L, Hu G, Fang R, Cheng HM, Li F (2017) Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Commun 8:14627

    Article  Google Scholar 

  32. Deng DR, Xue F, Jia YJ, Ye JC, Bai CD, Zheng MS, Dong QF (2017) Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries. ACS Nano 11:6031–6039

    Article  CAS  Google Scholar 

  33. Zheng S, Yi F, Li Z, Zhu Y, Xu Y, Luo C, Yang J, Wang C (2014) Copper-stabilized sulfur-microporous carbon cathodes for Li-S batteries. Adv Funct Mater 24:4156–4163

    Article  CAS  Google Scholar 

  34. Zhang J, Xiang J, Dong Z, Liu Y, Wu Y, Xu C, Du G (2014) Biomass derived activated carbon with 3D connected architecture for rechargeable lithium−sulfur batteries. Electrochim Acta 116:146–151

    Article  CAS  Google Scholar 

  35. Toniazzo V, Mustin C, Portal JM, Humbert B, Benoit R, Erre R (1999) Elemental sulfur at the pyrite surfaces: speciation and quantification. Appl Surf Sci 143:229–237

    Article  CAS  Google Scholar 

  36. Greczynski G, Kugler T, Salaneck WR (1999) Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy. Thin Solid Films 354:129–135

    Article  CAS  Google Scholar 

  37. Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv Mater 23:5641–5644

    Article  CAS  Google Scholar 

  38. Huang J-Q, Liu X-F, Zhang Q, Chen C-M, Zhao M-Q, Zhang S-M, Zhu W, Qian W-Z, Wei F (2013) Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from −40 to 60°C. Nano Energy 2:314–321

    Article  CAS  Google Scholar 

  39. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032

    Article  CAS  Google Scholar 

  40. Mikhaylik YV, Akridge JR (2004) Polysulfide Shuttle Study in the Li/S Battery System. J Electrochem Soc 151:A1969

    Article  CAS  Google Scholar 

  41. Kumaresan K, Mikhaylik Y, White RE (2008) A mathematical model for a lithium–sulfur cell. J Electrochem Soc 155:A576

    Article  CAS  Google Scholar 

Download references

Funding

The Fundamental Research Funds of the Central Universities (2013QNA48), Natural Science Foundation of Jiangsu Province of China (BK20160239), Key Laboratory of Coal-based CO2 Capture and Geological Storage, Jiangsu Province (China University of Mining and Technology) (Project Number: 2016B06) and Science and Technology Project of Xuzhou City (KC18063) financially supported the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huagen Liang or Panagiotis Tsiakaras.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, S., Ding, P., Zhang, Y. et al. Lithium-sulfur battery cathodes made of porous biochar support CoFe@NC metal nanoparticles derived from Prussian blue analogues. Ionics 25, 5297–5304 (2019). https://doi.org/10.1007/s11581-019-03065-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03065-7

Keywords

Navigation