Skip to main content
Log in

Simple synthesis route of glycine-assisted PANi-NiCo2O4 porous powder for electrochemical application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Glycine-assisted polyaniline-NiCo2O4 composite porous powder was synthesized by a simple chemical method. The FT-IR and UV-visible spectroscopy analysis confirmed the presence of the corresponding functional groups. Scanning electron microscopy revealed the porous morphology of NiCo2O4 and a brush-like morphology of PANi-NiCo2O4 composite which helps in enhancing the electrochemical performance of the composite. The X-ray diffraction pattern indicates the spinel crystal phase of NiCo2O4 in the synthesized sample. Cyclic voltammetry and impedance analysis were done to understand the electrochemical performance of the material. The specific capacitance calculated by galvanostatic charge-discharge method was found to be 687.5 F/g for PANi-NiCo2O4, whereas for NiCo2O4 and pure PANi, it was 458.5 F/g and 373.75 F/g respectively. Cyclic stability analysis showed 88% retention of specific capacitance over 1000 cycles for the as-synthesized PANi-NiCo2O4 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  PubMed  Google Scholar 

  2. Zhang G, Lou XW (2013) Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high performance supercapacitors. Sci Rep 3:1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu FS, Wang XH, Zheng WR, Gao HW, Hao C, Ge CW (2017) Synthesis and characterization of hierarchical Bi2MoO6/polyaniline nanocomposite for all solid state asymmetric supercapacitor. Electrochim Acta 245: 685–695

  4. Wang B, Maci’a-Agull JA, Prendiville DG, Zheng X, Liu D, Zhang Y, Boettcher SW, Ji X, Stucky GD (2014) A hybrid redox-supercapacitor system with anionic catholyte and cationic anolyte. J Electrochem Soc 161(6):A1090–A1093

    Article  CAS  Google Scholar 

  5. Wang B, Chen JS, Wang Z, Madhavi S, Lou XW (2012) Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv Energy Mater 2:1188–1192

    Article  CAS  Google Scholar 

  6. Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–234

    Article  CAS  Google Scholar 

  7. Ho MY, Khiew PS, Isa D, Tan TK, Chiu WS, Chia CH (2014) A review of metal oxide composite electrode materials for electrochemical capacitors. Nano: Brief Rep Rev 9(6):1430002–1430027

    Article  CAS  Google Scholar 

  8. Sharma V, Singh I, Chandra A (2018) Hollow nanostructures of metal oxides as next-generation electrode materials for supercapacitors. Sci Rep 8:1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan C, Wu H, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504

    Article  CAS  Google Scholar 

  10. Zheng Y, Liu Z, Chen W, Liang B, Du H, Yang R, He X, tang Z, Gui X (2017) Flexible, sandwich-like CNTs/NiCo2O4 hybrid paper electrodes for all solid state supercapacitors. J Mater Chem A 5:5886–5894

    Article  CAS  Google Scholar 

  11. Zhou S, Hao C, Wang J, Wang X, Gao H (2018) Metal-organic framework templated synthesis of porous NiCo2O4/ZnCo2O4/Co3O4 hollow polyhedral nanocages and their enhanced pseudocapacitive properties. Chem Eng J 351:74–84

    Article  CAS  Google Scholar 

  12. Wang B, Zhu T, Wu HB, Xu R, Chen JS, Lou XW (2012) Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH)0.11H2O nanowires with improved supercapacitive properties. Nanoscale 4:2145–2149

    Article  CAS  PubMed  Google Scholar 

  13. Wu Z, Zhu Y, Ji X (2014) A NiCo2O4-based materials for electrochemical supercapacitor. J Mater Chem:14759–14772

  14. Huang L, Chen D, Ding Y, Feng S, Wang Z, Liu M (2013) Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett:3135–3139

  15. Hao C, Zhou S, Wang J, Wang X, Gao H, Ge C (2018) Preparation of hierarchical spinel NiCo2O4 nanowires for high performance supercapacitors. J Ind Eng Chem Res 57:2517–2525

    Article  CAS  Google Scholar 

  16. Deng F, Yu L, Cheng G, Lin T, Sun M, Ye F, Li Y (2014) Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors. J Power Sources 251:202–207

    Article  CAS  Google Scholar 

  17. Huang L, Chen D, Ding Y, Feng S, Wang Z, Liu M (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitor. Nano Lett 13:3135–3139

    Article  CAS  PubMed  Google Scholar 

  18. Zhu Y, Wang J, Wu Z, Jing M, Hou H, Jia X, Ji X (2015) An electrochemical exploration of hollow NiCo2O4 sub-microspheres and its capacitive performances. J Power Sources 287:307–315

    Article  CAS  Google Scholar 

  19. Wu H, Pang H, Lou X (2013) Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy Environ Sci 6:3619–3626

    Article  CAS  Google Scholar 

  20. Zhang JN, Liu P, Jin C, Jin LN, Bian SW, Zhu Q, Wang B (2017) Flexible three-dimensional carbon cloth/carbon fibers/NiCo2O4 composite electrode materials for high performance all solid-state electrochemical capacitors. Electrochim Acta 256:90–99

    Article  CAS  Google Scholar 

  21. You Y, Zheng M, Jiang D, Li F, Yuan H, Zhai Z, Ma L, Shen W (2018) Boosting supercapacitive performance of ultrathin mesoporous NiCo2O4 nanosheets arrays by surface sulfation. J Mater Chem A 6:8742

    Article  CAS  Google Scholar 

  22. Du J, Zhou G, Zhang H, Cheng C, Ma J, Wei W, Chen L, Wang T (2013) Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. ACS Appl Mater Interfaces 5:7405–7409

    Article  CAS  PubMed  Google Scholar 

  23. Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, Huang Y, Zhi C (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438

    Article  CAS  Google Scholar 

  24. Guo G, Wu HB, Ding S, Liu LM, Lou XW (2015) Hierarchichal NiCo2O4 nanosheets grown on Ni nanoform as high performance electrodes for supercapacitors. Small. 11:804–808

    Article  CAS  Google Scholar 

  25. Zhang C, Geng X, Tang S, Deng M, Du Y (2017) NiCo2O4@rGO hybrid nanostructures on Ni foam as high performance supercapacitor electrodes. J Mater Chem A 5:5912–5919

    Article  CAS  Google Scholar 

  26. Patra S, Munichandraiah N (2007) Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate. J Appl Polym Sci 106:1160–1171

    Article  CAS  Google Scholar 

  27. Kumar MS, Yasoda KY, Batabyal SK, Kothurkar NK (2018) Carbon-polyaniline nanocomposites as supercapacitor materials. Mater Res Express 5:045505

  28. Gao H, Wang X, Wang G, Hao C, Zhou S, Huang C (2018) Urchin like MgCo2O4@PPy core-shell composite grown on Ni foam for a high performance all solid state asymmetric supercapacitor. Nanoscale. 10:10190–10202

    Article  CAS  PubMed  Google Scholar 

  29. Ramana GV, Srikanth VVSS (2014) Polyaniline nanostructures expedient as working electrode materials in supercapacitors. Applied Physics A 115(1):189

    Article  CAS  Google Scholar 

  30. Gao H, Wu F, Wang X, Hao C, Ge C (2018) Preparation of NiMoO4-PANi core shell nanocomposite for the high performance all solid state asymmetric supercapacitor. Int J Hydrog Energy 43:18349–18362

    Article  CAS  Google Scholar 

  31. Jelmy EJ, Ramakrishnan S, Rangarajan M, Kothurkar NK (2013) Effect of different carbon fillers and dopant acids on electrical properties of polyaniline nanocomposites. Bull Mater Sci 36:37–44

    Article  CAS  Google Scholar 

  32. Mathew J, Kumar MS, Kothurkar NK, Kumar RS, Narayanan BS (2018) Polyaniline/Fe3O4-rGO nanocomposites for microwave absorption IOP conf Series. Mater Sci Eng 310:012138

    Google Scholar 

  33. Silva CH, Galiote NA, Huguenin F, Teixeira-Neto E, Constantino VR, Temperini ML (2012) Spectroscopic morphological and electrochromic characterization of layer-by-layer hybrid films of polyaniline and hexaniobate nanoscrolls. J Mater Chem 22:14052–14060

    Article  CAS  Google Scholar 

  34. Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofibers as high-performance supercapacitor electrode materials. Chem Commun 51:12365–12368

    Article  CAS  Google Scholar 

  35. Shankar KV, Selvan RK (2015) The ternary MnFe2O4/graphene/polyaniline hybrid composite as the negative electrode for supercapacitors. J Power Sources 275:399–407

    Article  CAS  Google Scholar 

  36. Xie K, Zhang M, Yang Y, Zhao L, Qi W (2018) Synthesis and supercapacitor performance of polyaniline/nitrogen-doped ordered mesoporous carbon composites. Nanoscale Res Lett 13:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Elanthamilan E, Sathiyan A, Rajkumar S, Sheryl EJ, Merlin JP (2018) Polyaniline based charcoal/Ni nanocomposite material for high-performance supercapacitor. Sustain Energy Fuels 2:811–819

    Article  CAS  Google Scholar 

  38. Xu H, Wu JX, Chen Y, Zhang JL, Zhang BQ (2015) Facile synthesis of polyaniline/NiCo2O4 nanocomposites with enhanced electrochemical properties for supercapacitors. Ionics. 21:2615–2622

    Article  CAS  Google Scholar 

  39. Huang L, Zhang W, Xiang J, Huang Y (2016) Porous NiCo2O4/C nanofibers replicated by cotton template as high-rate electrode materials for supercapacitors. J Mater 2:248–255

    Google Scholar 

  40. Tang Y, Liu Y, Yu S, Guo W, Mu S, Wang H, Zhao Y, Hou L, Fan Y, Gao F (2015) Template-free hydrothermal synthesis of nickel cobalt hydroxide nanoflowers with high performance for asymmetric supercapacitor. Electrochim Acta 161:279–289

    Article  CAS  Google Scholar 

  41. Chayasombat B, Yordsri V, Oikawa T, Thanachayanont C (2015) Microstructural characterization of nickel hydroxide films deposited using an ammonia-induced method and subsequently calcined nickel oxide films. Mater Sci Semicond Process 34:224–229

    Article  CAS  Google Scholar 

  42. Li Y, Wu X, Wang S, Wang W, Xiang Y, Dai C, Liu Z, He Z, Wu X (2017) Surfactant assisted solvothermal synthesis of NiCo2O4 as an anode for lithium ion batteries. RSC Adv 7:36909–36916

    Article  CAS  Google Scholar 

  43. Yasoda KY, Mikhaylov AA, Medvedev AG, Kumar MS, Lev O, Prikhodchenko PV, Batabyal SK (2019) Brush like polyaniline on vanadium oxide decorated graphene oxide: efficient electrode materials for supercapacitors. J Energy Storage 22:188–193

    Article  Google Scholar 

  44. Liu D, Wang X, Deng J, Zhou C, Guo J, Liu P (2015) Crosslinked carbon nanotubes/polyaniline composites as a pseudocapacitive material with high cycling stability. Nanomaterials. 5:1034–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Science and Engineering Research Board (SERB) of the Department of Science and Technology (DST) (research grant ECR/2015/000208) and the Department of Science and Technology (DST) for research grant DST/INT/RFBR/P-241.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nikhil K. Kothurkar or Sudip K. Batabyal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.S., Yasoda, K.Y., Kothurkar, N.K. et al. Simple synthesis route of glycine-assisted PANi-NiCo2O4 porous powder for electrochemical application. Ionics 25, 4499–4507 (2019). https://doi.org/10.1007/s11581-019-03011-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03011-7

Keywords

Navigation