Skip to main content

Advertisement

Log in

Polyaniline nanostructures expedient as working electrode materials in supercapacitors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Granular type polyaniline (PANi), PANi nanofibers (NFs), and PANi nanotubes (NTs) expedient as working electrode materials for supercapacitors are synthesized. The synthesis procedure used in this work facilitates not only the synthesis of solid powders of the PANi nanostructures, but also thin films constituted by the same PANi nanostructures in the same experiment. PANi NFs are found to exhibit faster electrode kinetics and better capacitance when compared to PANi NTs and granular PANi. Specific capacitance and energy storage per unit mass of PANi NFs are 239.47 Fg−1 (at 0.5 Ag−1) and 43.2 Wh kg−1, respectively. Electrical conductivity of PANi NFs is also better when compared to the other two nanostructures. Properties of the three PANi nanostructures are explicated in correlation with crystallinity, intrinsic oxidation state, doping degree, BET surface area, and ordered mesoporosity pertaining to the nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.G. MacDiarmid, Angew. Chem., Int. Ed. Engl. 40, 2581 (2001)

    Article  Google Scholar 

  2. P. Chandrasekhar, Conducting Polymers, Fundamentals and Applications: A Practical Approach (Kluwer Academic, Boston, 1999)

    Book  Google Scholar 

  3. K.F. Schoch Jr., IEEE Electr. Insul. Mag. 10, 29 (1994)

    Article  Google Scholar 

  4. M. Angelopoulos, IBM J. Res. Dev. 45, 57 (2001)

    Article  Google Scholar 

  5. N. Gospodinova, L. Terlemezyan, Prog. Polym. Sci. 23, 1443 (1998)

    Article  Google Scholar 

  6. H.D. Tran, D. Li, R.B. Kaner, Adv. Mater. 21, 1487 (2009)

    Article  Google Scholar 

  7. D.H. Zhang, Y.Y. Wang, Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 134, 9 (2006)

    Article  Google Scholar 

  8. J. Stejskal, I. Sapurina, M. Trchová, Prog. Polym. Sci. 35, 1420 (2010)

    Article  Google Scholar 

  9. H.D. Tran, J.M. D’Arcy, Y. Wang, P.J. Beltramo, A. Veronica, R.B. Kaner, J. Mater. Chem. 21, 3534 (2011)

    Article  Google Scholar 

  10. M.X. Wan, Macromol. Rapid Commun. 30, 963 (2009)

    Article  Google Scholar 

  11. J. Jang, Adv. Polym. Sci. 199, 189 (2006)

    Article  Google Scholar 

  12. B. Sambhu, K. Dipak, K.S. Nikhil, J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)

    Article  Google Scholar 

  13. J. Huang, Pure Appl. Chem. 78, 15 (2006)

    Article  Google Scholar 

  14. D. Li, J. Huang, R.B. Kaner, Acc. Chem. Res. 42, 135 (2009)

    Article  Google Scholar 

  15. F. Berti, S. Todros, D. Lakshmi, M.J. Whitcombe, I. Chianella, M. Ferroni, S.A. Piletsky, A. Turner, G. Marrazza, Biosens. Bioelectron. 26, 497 (2010)

    Article  Google Scholar 

  16. J. Huang, S. Virji, B.H. Weille, R.B. Kaner, Chem. Eur. J. 10, 1314 (2004)

    Article  Google Scholar 

  17. C.A. Amarnath, J.H. Chang, D. Kim, R.S. Mane, S.H. Han, D. Sohn, Mater. Chem. Phys. 113, 14 (2009)

    Article  Google Scholar 

  18. S. Xiong, Q. Wang, H. Xia, Mater. Res. Bull. 39, 1569 (2004)

    Article  Google Scholar 

  19. X. Zhang, W.J. Goux, K.M. Sanjeev, J. Am. Chem. Soc. 126, 4502 (2004)

    Article  Google Scholar 

  20. B.K. Kuila, B. Nandan, M. Bohme, A. Janke, M. Stamm, Chem. Commun. 38, 5749 (2009)

    Article  Google Scholar 

  21. H.Y. Ma, Y.W. Li, S.X. Yang, F. Cao, J. Gong, Y.L. Deng, J. Phys. Chem. C 114, 9264 (2010)

    Article  Google Scholar 

  22. Z.D. Zujovic, Y. Wang, G.A. Bowmaker, R.B. Kaner, Macromolecules 44, 2735 (2011)

    Article  ADS  Google Scholar 

  23. X. Zhang, J. Zhu, N. Haldolaarachchige, J. Ryu, D.P. Young, S. Wei, Z. Guo, Polymer 53, 2109 (2012)

    Article  Google Scholar 

  24. H.W. Park, T. Kim, J. Huh, M. Kang, J.E. Lee, H. Yoon, ACS Nano 6, 7624 (2012)

    Article  Google Scholar 

  25. P. Liu, L. Zhang, Crit. Rev. Solid State Mater. Sci. 34, 75 (2009)

    Article  Google Scholar 

  26. G. Ćirić-Marjanović, Polyaniline nanostructures, in Nano-structured Conductive Polymers, ed. by A. Eftekhari (Wiley, London, 2010)

    Google Scholar 

  27. C. Laslau, Z. Zujovic, J. Travas-Sejdic, Prog. Polym. Sci. 35, 1403 (2010)

    Article  Google Scholar 

  28. J. Wang, D. Zhang, Polym. Adv. Technol. 32, E323 (2013)

    Article  Google Scholar 

  29. D.S. Dhawale, R.R. Salunkhe, V.S. Jamadade, D.P. Dubal, S.M. Pawar, C.D. Lokhande, Curr. Appl. Phys. 10, 904 (2010)

    Article  ADS  Google Scholar 

  30. D.S. Dhawale, D.P. Dubal, V.S. Jamadade, R.R. Salunkhe, C.D. Lokhande, Synth. Met. 160, 519 (2010)

    Article  Google Scholar 

  31. C. Bian, A. Yu, Synth. Met. 160, 1579 (2010)

    Article  Google Scholar 

  32. P.J. Hung, K.H. Chang, Y.F. Lee, C.C. Hu, K.-M. Lin, Electrochim. Acta 55, 6015 (2010)

    Article  Google Scholar 

  33. H. Guan, L.Z. Fan, H. Zhang, X. Qu, Electrochim. Acta 56, 964 (2010)

    Article  Google Scholar 

  34. F. Ran, Y. Tan, J. Liu, L. Zhao, L. Kong, Y. Luo, L. Kang, Polym. Adv. Technol. 23, 1297 (2012)

    Article  Google Scholar 

  35. Z.-L. Wang, R. Guo, G.-R. Li, H.-L. Lu, Z.-Q. Liu, F.-M. Xiao, M. Zhang, Y.-X. Tong, J. Mater. Chem. 22, 2401 (2012)

    Article  Google Scholar 

  36. G.V. Ramana, P. Balaji, V.V.S.S. Srikanth, P.K. Jain, G. Padmanabham, G. Sundararajan, Carbon 49, 5239 (2011)

    Article  Google Scholar 

  37. J. Huang, R.B. Kaner, Chem. Commun. 4, 367 (2006)

    Article  Google Scholar 

  38. Z.Z. Huang, E.H. Liu, H.J. Shen, X.X. Xiang, Y.Y. Tian, C.G. Xiao, Z.H. Mao, Mater. Lett. 65, 2015 (2011)

    Article  Google Scholar 

  39. C. Cheng, J. Jiang, R. Tang, F. Xi, Synth. Met. 145, 61 (2004)

    Article  Google Scholar 

  40. J.M. Kinyanjui, D.W. Hatchett, Chem. Mater. 16, 3390 (2004)

    Article  Google Scholar 

  41. J. Yue, A.J. Epstein, Macromolecules 24, 4441 (1991)

    Article  ADS  Google Scholar 

  42. E.T. Kang, K.G. Neoh, Y.L. Woo, K.L. Tan, Adv. Polym. Sci. 106, 135 (1993)

    Article  Google Scholar 

  43. J.T. Lei, Z. Cai, C.R. Martin, Synth. Met. 46, 53 (1992)

    Article  Google Scholar 

  44. F. Beck, Electrochim. Acta 33, 839 (1988)

    Article  Google Scholar 

  45. P. Schottland, K. Zong, C.L. Gaupp, B.C. Thompson, C.A. Thomas, I. Giurgiu, R. Hickman, K.A. Abboud, J.R. Reynolds, Macromolecules 33, 7051 (2000)

    Article  ADS  Google Scholar 

  46. Y.J. Yu, B. Che, Z.H. Si, L. Li, W. Chen, G. Xue, Synth. Met. 150, 271 (2005)

    Article  Google Scholar 

  47. J.P. Pouget, M.E. Jòzefowicz, A.J. Epstein, X. Tang, A.G. MacDiarmid, Macromolecules 24, 779 (1991)

    Article  ADS  Google Scholar 

  48. M. Kruk, M. Jaroniec, Chem. Mater. 13, 3169 (2001)

    Article  Google Scholar 

  49. K.T. Lee, J.C. Lytle, N.S. Ergang, S.M. Oh, A. Stein, Adv. Funct. Mater. 15, 547 (2005)

    Article  Google Scholar 

  50. C.C. Hu, J.Y. Lin, Electrochim. Acta 47, 4055 (2002)

    Article  Google Scholar 

  51. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313, 1760 (2006)

    Article  ADS  Google Scholar 

  52. H. Zhang, Q. Zhao, S. Zhou, N. Liu, X. Wang, J. Li, F. Wang, J. Power Sources 196, 10484 (2011)

    Article  Google Scholar 

  53. Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 4, 1963 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks are due to Dr. Neha (ARCI, Hyderabad) for helping us with XPS measurements. The authors also thank Mr. M. Durga Prasad, Center for Nanotechnology (University of Hyderabad), for helping us with TEM. GVR extends his gratitude to CSIR, India, for providing financial support through senior research fellowship. VVSSS thanks UGC, India, for its financial support through major research scheme vide Letter No. F. 41-993/2012 (SR). The authors sincerely thank Ms. Sailaja Sankisa for proofreading this article. Scientific discussions with Dr. P.K. Jain (ARCI, Hyderabad) have been very helpful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadali Venkata Satya Siva Srikanth.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 877 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gedela, V.R., Srikanth, V.V.S.S. Polyaniline nanostructures expedient as working electrode materials in supercapacitors. Appl. Phys. A 115, 189–197 (2014). https://doi.org/10.1007/s00339-013-7920-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7920-z

Keywords

Navigation