Skip to main content

Advertisement

Log in

An eco-friendly water-soluble graphene-incorporated agar gel electrolyte for magnesium-air batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Agar is used to prepare an environment-friendly water-soluble graphene (WSG)-incorporated gel electrolyte for magnesium-air batteries. WSG is synthesised and incorporated into the different concentrations of agar. Their effects on the electrochemical performance in the battery cell are investigated through the ionic conductivity, corrosion and current discharge studies. The open-circuit voltage (OCV) of the assembled cells is between 1.7 and 1.6 V. The optimal gel electrolyte has an ionic conductivity of 8.62 × 10−2 S cm−1. The discharge capacity and energy density of assembled Mg-air battery with respect to Mg can reach up to 1010.60 mAh g−1 and 1406.09 mWh g−1, respectively. The performance of the assembled Mg-air battery is notable in regard to the small area, size and thickness of the laminated structure. In conclusion, WSG-incorporated 3% w/v agar gel electrolyte exhibits the highest electrochemical performance, which is an economical, inherently safe and environmentally benign biopolymer electrolyte for Mg-air batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang T, Tao Z, Chen J (2014) Magnesium–air batteries: from principle to application. Mater Horiz 1(2):196–206

    Article  Google Scholar 

  2. Zhang Z, Zuo C, Liu Z, Yu Y, Zuo Y, Song Y (2014) All-solid-state Al–air batteries with polymer alkaline gel electrolyte. J Power Sources 251:470–475

    Article  CAS  Google Scholar 

  3. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727

    Article  CAS  PubMed  Google Scholar 

  4. Muldoon J, Bucur CB, Oliver AG, Sugimoto T, Matsui M, Kim HS, Allred GD, Zajicek J, Kotani Y (2012) Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci 5(3):5941–5950

    Article  CAS  Google Scholar 

  5. Peng B, Liang J, Tao Z, Chen J (2009) Magnesium nanostructures for energy storage and conversion. J Mater Chem 19(19):2877–2883

    Article  CAS  Google Scholar 

  6. Wang X, Hou Y, Zhu Y, Wu Y, Holze R (2013) An aqueous rechargeable lithium battery using coated Li metal as anode. Sci Rep 3:1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6(8):2265–2279

    Article  CAS  Google Scholar 

  8. Yan Y, Khoo T, Pozo-Gonzalo C, Hollenkamp AF, Howlett PC, MacFarlane DR, Forsyth M (2014) Roles of additives in the trihexyl (tetradecyl) phosphonium chloride ionic liquid electrolyte for primary Mg-air cells. J Electrochem Soc 161(6):A974–A980

  9. Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H (2013) Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat Commun 4:1805

    Article  CAS  PubMed  Google Scholar 

  10. Di Palma T et al (2017) Xanthan and κ-carrageenan based alkaline hydrogels as electrolytes for Al/air batteries. Carbohydr Polym 157:122–127

    Article  CAS  PubMed  Google Scholar 

  11. Finkenstadt VL (2005) Natural polysaccharides as electroactive polymers. Appl Microbiol Biotechnol 67(6):735–745

    Article  CAS  PubMed  Google Scholar 

  12. Kadokawa J-i, Murakami MA, Takegawa A, Kaneko Y (2009) Preparation of cellulose–starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75(1):180–183

    Article  CAS  Google Scholar 

  13. Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M, Vinoth pandi D (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157(Supplement C):38–47

    Article  CAS  PubMed  Google Scholar 

  14. Rachocki A, Pogorzelec-Glaser K, Pawlaczyk C, Tritt-Goc J (2011) Morphology, molecular dynamics and electric conductivity of carbohydrate polymer films based on alginic acid and benzimidazole. Carbohydr Res 346(17):2718–2726

    Article  CAS  PubMed  Google Scholar 

  15. Purwanto M, Atmaja L, Mohamed MA, Salleh MT, Jaafar J, Ismail AF, Santoso M, Widiastuti N (2016) Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells. RSC Adv 6(3):2314–2322

    Article  CAS  Google Scholar 

  16. Moon WG, Kim GP, Lee M, Song HD, Yi J (2015) A biodegradable gel electrolyte for use in high-performance flexible supercapacitors. ACS Appl Mater Interfaces 7(6):3503–3511

    Article  CAS  PubMed  Google Scholar 

  17. Aziz M et al (2015) PVA based gel polymer electrolytes with mixed iodide salts (K+I and Bu4N+I) for dye-sensitized solar cell application. Electrochim Acta 182:217–223

    Article  CAS  Google Scholar 

  18. Vaghela C, Kulkarni M, Haram S, Karve M, Aiyer R (2016) Biopolymer-polyaniline composite for a wide range ammonia gas sensor. IEEE Sensors J 16(11):4318–4325

    Article  CAS  Google Scholar 

  19. Rhein-Knudsen N, Ale MT, Meyer AS (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13(6):3340–3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Venugopal V (2011) Polysaccharides from seaweed and microalgae. In: Marine polysaccharides: food applications. CRC, Boca Raton, pp 89–134

    Chapter  Google Scholar 

  21. Raphael E, Avellaneda CO, Manzolli B, Pawlicka A (2010) Agar-based films for application as polymer electrolytes. Electrochim Acta 55(4):1455–1459

    Article  CAS  Google Scholar 

  22. An L, Zhao T, Zeng L (2013) Agar chemical hydrogel electrode binder for fuel-electrolyte-fed fuel cells. Appl Energy 109:67–71

    Article  CAS  Google Scholar 

  23. Selvam M et al (2013) Synthesis and characterization of electrochemically-reduced graphene. Bull Mater Sci 36(7):1315–1321

    Article  CAS  Google Scholar 

  24. Lih ETY, Ling TL, Chong KF (2012) Facile corrosion protection coating from graphene. Int J Chem Eng Appl 3(6):453–455

  25. Mayilvel Dinesh M, Saminathan K, Selvam M, Srither SR, Rajendran V, Kaler KVIS (2015) Water soluble graphene as electrolyte additive in magnesium-air battery system. J Power Sources 276:32–38

    Article  CAS  Google Scholar 

  26. Chong SW, Lai CW, Abd Hamid SB (2015) Green preparation of reduced graphene oxide using a natural reducing agent. Ceram Int 41(8):9505–9513

    Article  CAS  Google Scholar 

  27. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Article  CAS  PubMed  Google Scholar 

  28. Jia X, Yang Y, Wang C, Zhao C, Vijayaraghavan R, MacFarlane DR, Forsyth M, Wallace GG (2014) Biocompatible ionic liquid–biopolymer electrolyte-enabled thin and compact magnesium–air batteries. ACS Appl Mater Interfaces 6(23):21110–21117

    Article  CAS  PubMed  Google Scholar 

  29. Yuasa M, Huang X, Suzuki K, Mabuchi M, Chino Y (2015) Discharge properties of Mg–Al–Mn–Ca and Mg–Al–Mn alloys as anode materials for primary magnesium–air batteries. J Power Sources 297:449–456

    Article  CAS  Google Scholar 

  30. Sobon G, Sotor J, Jagiello J, Kozinski R, Zdrojek M, Holdynski M, Paletko P, Boguslawski J, Lipinska L, Abramski KM (2012) Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt Express 20(17):19463–19473

    Article  CAS  PubMed  Google Scholar 

  31. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  32. Willemse CM, Tlhomelang K, Jahed N, Baker PG, Iwuoha EI (2011) Metallo-graphene nanocomposite electrocatalytic platform for the determination of toxic metal ions. Sensors 11(4):3970–3987

    Article  CAS  PubMed  Google Scholar 

  33. Bo Z et al (2014) Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci Rep 4(4684):1–8

    Google Scholar 

  34. Gurunathan S et al (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu Q, Zeng M, Feng Z, Yin D, Huang Y, Chen Y, Yan C, Li R, Gu Y (2016) Understanding the effects of carboxylated groups of functionalized graphene oxide on the curing behavior and intermolecular interactions of benzoxazine nanocomposites. RSC Adv 6(37):31484–31496

    Article  CAS  Google Scholar 

  36. Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2017) Study on NH4I composition effect in agar–agar-based biopolymer electrolyte. Ionics 23(10):2791–2797

    Article  CAS  Google Scholar 

  37. Shankar S, Rhim J-W (2017) Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocoll 71:76–84

    Article  CAS  Google Scholar 

  38. Volery P, Besson R, Schaffer-Lequart C (2004) Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection. J Agric Food Chem 52(25):7457–7463

    Article  CAS  PubMed  Google Scholar 

  39. Shankar S, Teng X, Rhim J-W (2014) Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydr Polym 114:484–492

    Article  CAS  PubMed  Google Scholar 

  40. Shankar S, Rhim J-W (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26

    Article  CAS  PubMed  Google Scholar 

  41. Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2018) Effect of ethylene carbonate plasticizer on agar-agar: NH4Br-based solid polymer electrolytes. Ionics 24(8):2209–2217

  42. Bora C, Bharali P, Baglari S, Dolui SK, Konwar BK (2013) Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity. Compos Sci Technol 87:1–7

    Article  CAS  Google Scholar 

  43. Belay M, Nagarale RK, Verma V (2017) Preparation and characterization of graphene-agar and graphene oxide-agar composites. J Appl Polym Sci 134(33):45085

    Article  CAS  Google Scholar 

  44. Wojtoniszak M, Zielinska B, Kalenczuk RJ, Mijowska E (2012) Photocatalytic performance of titania nanospheres deposited on graphene in coumarin oxidation reaction. Mater Sci-Pol 30(1):32–38

    Article  CAS  Google Scholar 

  45. Hernandez-Carmona G, Freile-Pelegrin Y, Garibay EH (2013) Conventional and alternative technologies for the extraction of algal polysaccharides. In: Dominguez H (ed) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing Limited, La Vergne, pp 475–509

    Chapter  Google Scholar 

  46. Jia X, Wang C, Ranganathan V, Napier B, Yu C, Chao Y, Forsyth M, Omenetto FG, MacFarlane DR, Wallace GG (2017) A biodegradable thin-film magnesium primary battery using silk fibroin–ionic liquid polymer electrolyte. ACS Energy Lett 2(4):831–836

    Article  CAS  Google Scholar 

  47. Lebrini M, Lagrenée M, Traisnel M, Gengembre L, Vezin H, Bentiss F (2007) Enhanced corrosion resistance of mild steel in normal sulfuric acid medium by 2,5-bis(n-thienyl)-1,3,4-thiadiazoles: electrochemical, X-ray photoelectron spectroscopy and theoretical studies. Appl Surf Sci 253(23):9267–9276

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Grand Challenge (GC002A-15SBS) and the IPPP-UM (PG219-2016A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Ching Juan.

Electronic supplementary material

ESM 1

(DOCX 727 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liew, S.Y., Juan, J.C., Lai, C.W. et al. An eco-friendly water-soluble graphene-incorporated agar gel electrolyte for magnesium-air batteries. Ionics 25, 1291–1301 (2019). https://doi.org/10.1007/s11581-018-2710-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2710-4

Keywords

Navigation