Skip to main content

Advertisement

Log in

Facile synthesis of ZnMn2O4 nanosheets via cathodic electrodeposition: characterization and supercapacitor behavior studies

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, we report a facile chemical precipitation method to prepare zinc manganite (ZnMn2O4) materials. ZnMn2O4 nanosheets were synthesized through a cathodic electrolytic electrodeposition (ELD), and their application as supercapacitor electrodes were evaluated. The effect of calcining temperature on the nanostructure and morphology of ZnMn2O4 was investigated systematically through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), FTIR spectroscopy, X-ray diffractometery (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) surface area measurements. Electrochemical properties of the synthesized products as electrodes in a supercapacitor device were studied using cyclic voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscopy in aqueous electrolyte. ZnMn2O4 nanosheets exhibiting remarkable electrochemical performance in supercapacitors with specific capacitance (∼457 F g−1 at 1 A g−1), excellent rate capability (67.2% capacity retention at 10 A g−1), and good cycling stability (only 92.5% loss after 4000 cycles at 3 A g−1). All the results demonstrate that the synthesis route is cost-effective, facile, and can development for prepared electrode materials in electrochemical supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:28–62. https://doi.org/10.1002/adma.200903328

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  3. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270. https://doi.org/10.1021/cr020730k

    Article  CAS  Google Scholar 

  4. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Sci Mag 321:651–652. https://doi.org/10.1126/science.1158736

    Article  CAS  Google Scholar 

  5. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211. https://doi.org/10.1126/science.1249625

    Article  CAS  PubMed  Google Scholar 

  6. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816–1130059. https://doi.org/10.1002/aenm.201300816

    Article  CAS  Google Scholar 

  7. Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180. https://doi.org/10.1039/B923596E

    Article  CAS  PubMed  Google Scholar 

  8. Itagaki M, Suzuki S, Shitanda I, Watanabe K, Nakazawa H (2007) Impedance analysis on electric double layer capacitor with transmission line model. J Power Sources 164:415–424. https://doi.org/10.1016/j.jpowsour.2006.09.077

    Article  CAS  Google Scholar 

  9. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. https://doi.org/10.1039/C1CS15060J

    Article  CAS  PubMed  Google Scholar 

  10. He S, Hu C, Hou H, Chen W (2014) Ultrathin MnO2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors. J Power Sources 246:754–761. https://doi.org/10.1016/j.jpowsour.2013.08.038

    Article  CAS  Google Scholar 

  11. Chang J, Jin M, Yao F, Kim TH, Le VT, Yue H, Gunes F, Li B, Ghosh A, Xie S (2013) Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater 23:5074–5083. https://doi.org/10.1002/adfm201301851

    Article  CAS  Google Scholar 

  12. Yuan C, Li J, Hou L, Yang L, Shen L, Zhang X (2012) Facile growth of hexagonal NiO nanoplatelet arrays assembled by mesoporous nanosheets on Ni foam towards high-performance electrochemical capacitors. Electrochim Acta 78:532–538. https://doi.org/10.1016/j.electacta.2012.06.044

    Article  CAS  Google Scholar 

  13. Purushothaman KK, Manohara Babu I, Sethuraman B, Muralidharan G (2013) Nanosheet-assembled NiO microstructures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10767–10773. https://doi.org/10.1021/am402869p

    Article  CAS  PubMed  Google Scholar 

  14. Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou XWD (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ Sci 5:7883–7887. https://doi.org/10.1039/C2EE21745G

    Article  CAS  Google Scholar 

  15. Du W, Liu R, Jiang Y, Lu Q, Fan Y, Gao F (2013) Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J Power Sources 227:101–105. https://doi.org/10.1016/j.jpowsour.2012.11.009

    Article  CAS  Google Scholar 

  16. Lu Y, Yan H, Qiu K, Cheng J, Wang W, Liu X, Tang C, Kim J-K, Luo Y (2015) Hierarchical porous CuO nanostructures with tunable properties for high performance supercapacitors. RSC Adv 5:10773–10781. https://doi.org/10.1039/C4RA16924G

    Article  CAS  Google Scholar 

  17. Ye J, Li Z, Dai Z, Zhang Z, Guo M, Wang X (2016) Facile synthesis of hierarchical CuO nanoflower for supercapacitor electrodes. J Electron Mater 45:4237–4245. https://doi.org/10.1007/s11664-016-4587-1

    Article  CAS  Google Scholar 

  18. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XWD (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180. https://doi.org/10.1002/adma.201202146

    Article  CAS  PubMed  Google Scholar 

  19. Jiang H, Ma J, Li C (2012) Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem Commun 48:4465–4467. https://doi.org/10.1039/C2CC31418E

    Article  CAS  Google Scholar 

  20. Zhang G, Lou XWD (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979. https://doi.org/10.1002/adma.201204128

    Article  CAS  PubMed  Google Scholar 

  21. Sharma Y, Sharma N, Rao GS, Chowdari B (2008) Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ionics 179:587–597. https://doi.org/10.1016/j.ssi.2008.04.007

    Article  CAS  Google Scholar 

  22. Zhang G, Xia BY, Xiao C, Yu L, Wang X, Xie Y, Lou XWD (2013) General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew Chem Int Ed 125:8805–8809. https://doi.org/10.1002/ange.201304355

    Article  Google Scholar 

  23. Sharma Y, Sharma N, Subba Rao G, Chowdari B (2007) Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater 17:2855–2861. https://doi.org/10.1002/adfm.200600997

    Article  CAS  Google Scholar 

  24. Karthikeyan K, Kalpana D, Renganathan N (2009) Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 15:107–110. https://doi.org/10.1007/s11581-008-0227-y

    Article  CAS  Google Scholar 

  25. Heydari H, Gholivand MB (2017) Novel synthesis and characterization of ZnCo2O4 nanoflakes grown on nickel foam as efficient electrode materials for electrochemical supercapacitors. Ionics 23:1489–1498. https://doi.org/10.1007/s11581-016-1959-8

    Article  CAS  Google Scholar 

  26. Wang Z, Zhang X, Li Y, Liu Z, Hao Z (2013) Synthesis of graphene–NiFe2O4 nanocomposites and their electrochemical capacitive behavior. J Mater Chem A 1:6393–6399

    Article  CAS  Google Scholar 

  27. Xiao J, Yang S (2011) Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Adv 1:588–595. https://doi.org/10.1039/C1RA00342A

    Article  CAS  Google Scholar 

  28. Zhang X-D, Wu Z-S, Zang J, Li D, Zhang Z-D (2007) Hydrothermal synthesis and characterization of nanocrystalline Zn–Mn spinel. J Phys Chem Solids 68:1583–1590. https://doi.org/10.1016/j.jpcs.2007.03.044

    Article  CAS  Google Scholar 

  29. He W, Wang C, Li H, Deng X, Xu X, Zhai T (2017) Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv Energy Mater 7:1700983–1700994. https://doi.org/10.1002/aenm.201700983

    Article  CAS  Google Scholar 

  30. Yu X, Lu B, Xu Z (2014) Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4–3D graphene hybrid electrodes. Adv Mater 26:1044–1051. https://doi.org/10.1002/aenm.201700983

    Article  CAS  PubMed  Google Scholar 

  31. Wang C, Guo K, He W, Deng X, Hou P, Zhuge F, Xu X, Zhai T (2017) Hierarchical CuCo2O4@ nickel-cobalt hydroxides core/shell nanoarchitectures for high-performance hybrid supercapacitors. Sci Bull 62:1122–1131. https://doi.org/10.1016/j.scib.2017.08.014

    Article  CAS  Google Scholar 

  32. Sun P, Wang C, He W, Hou P, Xu X (2017) One-step synthesis of 3D network-like Ni x Co1–x MoO4 porous Nanosheets for high performance battery-type hybrid supercapacitors. ACS Sustain Chem Eng 5:10139–10147. https://doi.org/10.1021/acssuschemeng.7b02143

    Article  CAS  Google Scholar 

  33. Liu Y, Wang Y, Xu X, Sun P, Chen T (2014) Facile one-step room-temperature synthesis of Mn-based spinel nanoparticles for electro-catalytic oxygen reduction. RSC Adv 4:4727–4731. https://doi.org/10.1039/C3RA47065B

    Article  CAS  Google Scholar 

  34. Zhang G, Yu L, Wu HB, Hoster HE, Lou XWD (2012) Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater 24:4609–4613. https://doi.org/10.1002/adma.201201779

    Article  CAS  PubMed  Google Scholar 

  35. Bhandage G, Keer H (1978) Magnetic properties of the ZnMn2O4-NiMn2O4 system. J Phys C Solid State Phys 11:219–221. https://doi.org/10.1088/0022-3719/11/6/008

    Article  Google Scholar 

  36. Teh PF, Sharma Y, Ko YW, Pramana SS, Srinivasan M (2013) Tuning the morphology of ZnMn2O4 lithium ion battery anodes by electrospinning and its effect on electrochemical performance. RSC Adv 3:2812–2821. https://doi.org/10.1039/C2RA22943A

    Article  CAS  Google Scholar 

  37. Wang N, Ma X, Xu H, Chen L, Yue J, Niu F, Yang J, Qian Y (2014) Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 6:193–199. https://doi.org/10.1016/j.nanoen.2014.04.001

    Article  CAS  Google Scholar 

  38. Jin R, Wen Q, Yang L, Li G (2014) ZnMn2O4 mesocrystals for lithium-ion batteries with high rate capacity and cycle stability. Mater Lett 135:55–58. https://doi.org/10.1016/j.matlet.2014.07.132

    Article  CAS  Google Scholar 

  39. Kim S-W, Lee H-W, Muralidharan P, Seo D-H, Yoon W-S, Kim DK, Kang K (2011) Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res 4:505–510. https://doi.org/10.1007/s12274-011-0106-0

    Article  CAS  Google Scholar 

  40. Yang Y, Zhao Y, Xiao L, Zhang L (2008) Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochem Commun 10:1117–1120. https://doi.org/10.1016/j.elecom.2008.05.026

    Article  CAS  Google Scholar 

  41. Sahoo A, Sharma Y (2015) Synthesis and characterization of nanostructured ternary zinc manganese oxide as novel supercapacitor material. Mater Chem Phys 149:721–727. https://doi.org/10.1016/j.matchemphys.2014.11.032

    Article  CAS  Google Scholar 

  42. Guo N, Wei X, Deng X, Xu X (2015) Synthesis and property of spinel porous ZnMn2O4 microspheres. Appl Surf Sci 356:1127–1134. https://doi.org/10.1016/j.apsusc.2015.08.185

    Article  CAS  Google Scholar 

  43. Zhitomirsky I (2002) Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv Colloid Interf 97:279–317. https://doi.org/10.1016/S0001-8686(01)00068-9

    Article  CAS  Google Scholar 

  44. Gal-Or L, Silberman I, Chaim R (1991) Electrolytic ZrO2 coatings I. Electrochemical aspects. J Electrochem Soc 138:1939–1942. https://doi.org/10.1149/1.2085904

    Article  CAS  Google Scholar 

  45. Therese GHA, Kamath PV (2000) Electrochemical synthesis of metal oxides and hydroxides. Chem Mater 12:1195–1204. https://doi.org/10.1021/cm990447a

    Article  CAS  Google Scholar 

  46. Chen Y, Xie K, Pan Y, Zheng C (2010) Effect of calcination temperature on the electrochemical performance of nanocrystalline LiMn2O4 prepared by a modified resorcinol–formaldehyde route. Solid State Ionics 181:1445–1450. https://doi.org/10.1016/j.ssi.2010.08.011

    Article  CAS  Google Scholar 

  47. Oh SW, Bang HJ, Bae YC, Sun Y-K (2007) Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J Power Sources 173:502–509. https://doi.org/10.1016/j.jpowsour.2007.04.087

    Article  CAS  Google Scholar 

  48. Liu Y, Zhang X (2009) Effect of calcination temperature on the morphology and electrochemical properties of Co3O4 for lithium-ion battery. Electrochim Acta 54:4180–4185. https://doi.org/10.1016/j.electacta.2009.02.060

    Article  CAS  Google Scholar 

  49. Moazami HR, Davarani SSH, Yousefi T, Keshtkar AR (2015) Synthesis of manganese dioxide nanosheets and charge storage evaluation. Mater Sci Semicond Process 30:682–687. https://doi.org/10.1016/j.mssp.2014.09.002

    Article  CAS  Google Scholar 

  50. Selim M, Deraz N, Elshafey O, El-Asmy A (2010) Synthesis, characterization and physicochemical properties of nanosized Zn/Mn oxides system. Alloys Compd 506:541–547. https://doi.org/10.1016/j.jallcom.2010.04.180

    Article  CAS  Google Scholar 

  51. Deng Y, Tang S, Zhang Q, Shi Z, Zhang L, Zhan S, Chen G (2011) Controllable synthesis of spinel nano-ZnMn2O4 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries. J Mater Chem A 21:11987–11995. https://doi.org/10.1039/C1JM11575H

    Article  CAS  Google Scholar 

  52. Kim JG, Lee SH, Kim Y, Kim WB (2013) Fabrication of free-standing ZnMn2O4 mesoscale tubular arrays for lithium-ion anodes with highly reversible lithium storage properties. ACS Appl Mater Interfaces 5:11321–11328. https://doi.org/10.1021/am403546s

    Article  CAS  PubMed  Google Scholar 

  53. Zhang P, Li X, Zhao Q, Liu S (2011) Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods. Nanoscale Res Lett 6:1–8. https://doi.org/10.1186/1556-276X-6-323

    Article  CAS  Google Scholar 

  54. He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2012) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182. https://doi.org/10.1021/nn304833s

    Article  CAS  PubMed  Google Scholar 

  55. Dai K, Liang C, Dai J, Lu L, Zhu G, Liu Z, Liu Q, Zhang Y (2014) High-yield synthesis of carbon nanotube–porous nickel oxide nanosheet hybrid and its electrochemical capacitance performance. Mater Chem Phys 143:1344–1351. https://doi.org/10.1016/j.matchemphys.2013.11.045

    Article  CAS  Google Scholar 

  56. Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y (2011) Symmetrical MnO2–carbon nanotube–textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5:8904–8913. https://doi.org/10.1021/nn203085j

    Article  CAS  PubMed  Google Scholar 

  57. Huang T, Zhao C, Qiu Z, Luo J, Hu Z (2017) Hierarchical porous ZnMn2O4 synthesized by the sucrose-assisted combustion method for high-rate supercapacitors. Ionics 23:139–146. https://doi.org/10.1007/s11581-016-1817-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Shahid Beheshti University for providing laboratory and financial supports to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamil Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkhordari, H., Heydari, H., Nosrati, A. et al. Facile synthesis of ZnMn2O4 nanosheets via cathodic electrodeposition: characterization and supercapacitor behavior studies. Ionics 25, 275–285 (2019). https://doi.org/10.1007/s11581-018-2565-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2565-8

Keywords

Navigation