Advertisement

Ionics

, Volume 24, Issue 4, pp 967–976 | Cite as

Effects of doping Al on the structure and electrochemical performances of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials

  • Min Luo
  • Ran Zhang
  • Yongqiang Gong
  • Meng Wang
  • Yunbo Chen
  • Mo Chu
  • Lin Chen
Original Paper
  • 211 Downloads

Abstract

The Li-rich cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 had been successfully synthesized by a carbonate coprecipitation method. The effects of substituting traces of Al element for different transitional metal elements on the crystal structure and surface morphology had been investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy. The results revealed that all the materials showed similar XRD patterns and surface morphology. It was demonstrated that LNCMAl1 exhibited the superior electrochemical performance. The discharge capacity was 265.2 mAh g−1 at 0.1 C and still maintained a discharge capacity of 135.6 mAh g−1 at 5.0 C. The capacity retention could still be 58.2 and 66.8% after 50 cycles at 1.0 and 2.0 C, respectively. Electrochemical impedance spectra results proved that the remarkably improved rate capability and cycling performance could be ascribed to the low charge transfer resistance and enhanced reaction kinetics.

Keywords

Lithium-ion battery Li-rich cathode materials Carbonate coprecipitation method Al doping 

Notes

Funding information

This work was funded by the National Natural Science Foundation of China (51202083 and 51472032).

References

  1. 1.
    Islam MS, Fisher CA (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185–204CrossRefGoogle Scholar
  2. 2.
    Yu XZ, Lu BA, Xu Z (2014) Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO-3D graphene hybrid electrodes. Adv Mater 26:1044–1051CrossRefGoogle Scholar
  3. 3.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRefGoogle Scholar
  4. 4.
    Kang SH, Thackeray MM (2008) Stabilization of xLi(2)MnO(3)·(1-x)LiMO(2) electrode surfaces (M=Mn, Ni, Co) with mildly acidic, fluorinated solutions. J Electrochem Soc 155:A269–A275CrossRefGoogle Scholar
  5. 5.
    Yu H, Kim H, Wang Y, He P, Asakura D, Nakamura Y, Zhou H (2012) High energy ‘composite’ layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys Chem 14:6584–6595Google Scholar
  6. 6.
    Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125CrossRefGoogle Scholar
  7. 7.
    Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698CrossRefGoogle Scholar
  8. 8.
    Wu Y, Murugan AV, Manthiram A (2008) Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4. J Electrochem Soc 155:A635–A641CrossRefGoogle Scholar
  9. 9.
    Wang M, Luo M, Chen YB, Chen L, Yan S, Ren YZ (2017) A new approach to improve the electrochemical performance of Li-rich cathode material by precursor pretreatment. J Alloys Compd 696:891–899CrossRefGoogle Scholar
  10. 10.
    Wang M, Luo M, Chen YB, Su YF, Chen L, Zhang R (2017) Electrochemical deintercalation kinetics of 0.5Li2MnO3·0.5LiNi1/3Mn1/3Co1/3O2 studied by EIS and PITT. J Alloys Compd 696:907–913CrossRefGoogle Scholar
  11. 11.
    Jin X, Xu QJ, Liu HM, Yuan XL, Xia YY (2014) Excellent rate capability of Mg doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Electrochim Acta 136:19–26CrossRefGoogle Scholar
  12. 12.
    Gong ZL, Liu HS, Guo XJ, Zhang ZR, Yang Y (2004) Effects of preparation methods of LiNi0.8Co0.2O2 cathode materials on their morphology and electrochemical performance. J Power Sources 136:139–144CrossRefGoogle Scholar
  13. 13.
    Dogan F, Vaughey JT, Iddir H, Key B (2016) Direct observation of lattice aluminum environments in Li-ion cathodes LiNi1-y-zCoyAlzO2 and Al-doped LiNixMnyCozO2 via (27)Al MAS NMR spectroscopy. ACS Appl Mat Interfaces 8:16708–16717CrossRefGoogle Scholar
  14. 14.
    Han B, Paulauskas T, Key B, Peebles C, Park JS, Klie RF, Vaughey GT, Dogan F (2017) Understanding the role of temperature and cathode composition on interface and bulk: optimizing aluminum oxide coatings for Li-ion cathodes. ACS Appl Mat Interfaces 9:14769–14778CrossRefGoogle Scholar
  15. 15.
    Zhao YJ, Li J, Dahn JR (2017) Inter-diffusion of cations from metal oxide surface coatings into LiCoO2 during sintering. Chem Mater 29:5239–5248CrossRefGoogle Scholar
  16. 16.
    Yuan XL, Xu QJ, Liu XN, Shen W, Liu HM, Xia YY (2016) Excellent rate performance and high capacity of Mo doped layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 derived from an improved coprecipitation approach. Electrochim Acta 207:120–129CrossRefGoogle Scholar
  17. 17.
    Buta S, Morgan D, Ven DVA, Aydinol MK, Ceder G (1999) Phase separation tendencies of aluminum-doped transition-metal oxides (LiAl1-xMxO2) in the α-NaFeO2 crystal structure. J Electrochem Soc 146:4335–4338CrossRefGoogle Scholar
  18. 18.
    Fey GTK, Chen JG, Subramanian V, Osaka T (2002) Preparation and electrochemical properties of Zn-doped LiNi0.8Co0.2O2. J Power Sources 112:384–394CrossRefGoogle Scholar
  19. 19.
    Kang SH, Qin HF, Fang Y, Li X, Wang YG (2014) Preparation and electrochemical performance of yttrium-doped Li[Li0.20Mn0.534Ni0.133Co0.133]O2 as cathode material for lithium-ion batteries. Electrochim Acta 144:22–30CrossRefGoogle Scholar
  20. 20.
    Yoon WS, Kim N, Yang XQ, Mcbreen J, Grey CP (2003) 6Li MAS and in situ X-ray studies of lithium nickel manganese oxides. J Power Sources 119:649–653CrossRefGoogle Scholar
  21. 21.
    Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15:2257–2267CrossRefGoogle Scholar
  22. 22.
    Cabana J, Johnson CS, Yang XQ, Chung KY, Yoon WS, Kang SH, Thackeray MM, Grey CP (2011) Structural complexity of layered-spinel composite electrodes for Li-ion batteries. J Mater Res 25:1601–1616CrossRefGoogle Scholar
  23. 23.
    Kim JS, Johnson CS, Vaughey JT, Thackeray MM, Hackney SA, Yoon W, Grey CP (2004) Electrochemical and structural properties of xLi2M’O3·LiMn0.5Ni0.5O2 electrodes for lithium batteries (M’=Ti, Mn, Zr; 0≦x≦3). Chem Mater 16:1996–2006CrossRefGoogle Scholar
  24. 24.
    Armstrong AR, Robertson AD, Bruce PG (2005) Overcharging manganese oxides: extracting lithium beyond Mn4+. J Power Sources 146:275–280CrossRefGoogle Scholar
  25. 25.
    Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Hackney SA (2006) Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M=Mn, Ni, Co) for lithium batteries. Electrochem Commun 8:1531–1538CrossRefGoogle Scholar
  26. 26.
    Johnson CS, Li N, Lefief C, Thackeray MM (2007) Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50 °C. Electrochem Commun 9:787–795CrossRefGoogle Scholar
  27. 27.
    Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM (2007) Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M=Mn0.5-xNi0.5-xCo2x, 0≦x≦0.5). J Mater Chem 17:2069–2077CrossRefGoogle Scholar
  28. 28.
    Lee SH, Moon JS, Lee MS, Yu TH, Kim H, Park BM (2015) Enhancing phase stability and kinetics of lithium-rich layered oxide for an ultra-high performing cathode in Li-ion batteries. J Power Sources 281:77–84CrossRefGoogle Scholar
  29. 29.
    Jafta CJ, Ozoemena KI, Mathe MK, Roos WD (2012) Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.20Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochim Acta 85:411–422CrossRefGoogle Scholar
  30. 30.
    Hong J, Gwon H, Jung SK, Ku K, Kang K (2015) Review-lithium-excess layered cathodes for lithium rechargeable batteries. J Electrochem Soc 162:A2447–A2467CrossRefGoogle Scholar
  31. 31.
    Wu YQ, Ming J, Zhuo LH, Yu YC, Zhao FY (2013) Simultaneous surface coating and chemical activation of the Li-rich solid solution lithium rechargeable cathode and its improved performance. Electrochim Acta 113:54–62CrossRefGoogle Scholar
  32. 32.
    Yu HJ, Zhou HS (2013) High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J Phys Chem Lett 4:1268–1280CrossRefGoogle Scholar
  33. 33.
    Song B, Lai MO, Lu L (2012) Influence of Ru substitution on Li-rich 0.55Li2Mn O3·0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries. Electrochim Acta 80:187–195CrossRefGoogle Scholar
  34. 34.
    Deng ZQ, Manthiram A (2011) Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. J Phys Chem C 115:7097–7103CrossRefGoogle Scholar
  35. 35.
    Hu SK, Chou TC, Hwang BJ, Ceder G (2006) Effect of Co content on performance of LiAl 1/3-xCoxNi1/3Mn1/3O2 compounds for lithium-ion batteries. J Power Sources 160:1287–1293CrossRefGoogle Scholar
  36. 36.
    Fey GTK, Muralidharan P, Lu CZ, Cho YD (2006) Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2. Electrochim Acta 51:4850CrossRefGoogle Scholar
  37. 37.
    Zhang ZR, Liu HS, Gong ZL, Yang Y (2004) Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8Co0.2O2 cathode materials. J Power Sources 129:101CrossRefGoogle Scholar
  38. 38.
    Lin F, Markus IM, Nordlund D, Weng TC, Asta MD, Xin HL, Doeff MM (2014) Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5:3529Google Scholar
  39. 39.
    Gu M, Belharouak I, Zheng JM, Wu HM, Xiao J, Genc A, Amine K, Thevuthasan S, Baer DR, Zhang JG, Browning ND, Liu J, Wang CM (2013) Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7:760CrossRefGoogle Scholar
  40. 40.
    Zimo H, Li X, Liang Y, He Z, Chen H, Wang Z, Guo H (2015) Structural and electrochemical characterization of Mg-doped Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion batteries. Solid State Ionics 282:88–94CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Min Luo
    • 1
    • 2
  • Ran Zhang
    • 1
    • 2
  • Yongqiang Gong
    • 1
    • 2
  • Meng Wang
    • 1
  • Yunbo Chen
    • 1
  • Mo Chu
    • 2
  • Lin Chen
    • 1
  1. 1.Advanced Manufacture Technology Center China Academy of Machinery Science and TechnologyBeijingChina
  2. 2.School of Chemical and Environmental EngineeringChina University of Mining and Technology (Beijing)BeijingChina

Personalised recommendations