Skip to main content
Log in

SGO/SPEN-based highly selective polymer electrolyte membranes for direct methanol fuel cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, proton-exchange membranes (PEMs) consisting of sulfonated poly(arylene ether nitrile) (SPEN) have been successfully prepared by incorporating a different amount of sulfonated graphene oxide (SGO). Incorporation of SGO can improve proton conductivity and reduce the methanol permeability. Besides, the existence of the intermolecular interactions between SPEN and SGO can improve the interfacial compatibility between filler and matrix. The resulting composite membranes show better mechanical property, proton conductivity and lower methanol permeability compared to that of pure SPEN. Furthermore, the composite membrane with 1 wt% SGO possesses good interfacial compatibility, exhibiting excellent proton conductivity (0.109 S/cm at 20 °C and 0.265 S/cm at 80 °C) and low methanol permeability (0.17×10−6 cm2·s−1 at 20 °C). So it achieves the highest selectivity (6.412×105 S·s·cm−3), which is about 14 times higher than that of Nafion 117. All these data indicate that the SPEN/SGO composite membranes have good potential for applications in direct methanol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shrivastava NK, Thombre SB, Chadge RB (2016) Liquid feed passive direct methanol fuel cell: challenges and recent advances. Ionics 22:1–23

    Article  CAS  Google Scholar 

  2. Falcão DS, Oliveira VB, Rangel CM, Pinto AMFR (2014) Review on micro-direct methanol fuel cells. Renew Sust Energ Rev 34:58–70

    Article  Google Scholar 

  3. Munjewar SS, Thombre SB, Mallick RK (2017a) A comprehensive review on recent material development of passive direct methanol fuel cell. Ionics 23:1–18

    Article  CAS  Google Scholar 

  4. Faghri A, Guo Z (2008) An innovative passive DMFC technology. Appl Therm Eng 28:1614–1622

    Article  CAS  Google Scholar 

  5. Munjewar SS, Thombre SB, Mallick RK (2017b) Approaches to overcome the barrier issues of passive direct methanol fuel cell-review. Renew Sust Energ Rev 67:1087–1104

    Article  CAS  Google Scholar 

  6. Hashemi R, Yousefi S, Faraji M (2015) Experimental studying of the effect of active area on the performance of passive direct methanol fuel cell. Ionics 21:2851–2862

    Article  CAS  Google Scholar 

  7. Yousefi S, Zohoor M (2014) Conceptual design and statistical overview on the design of a passive DMFC single cell. Int J Hydrog Energy 39:5972–5980

    Article  CAS  Google Scholar 

  8. Ting G, Sun J, Deng H, Jiao K, Huang XR (2015) Transient analysis of passive direct methanol fuel cells with different operation and design parameters. Int J Hydrog Energy 40:14978–14995

    Article  Google Scholar 

  9. Yousefi S, Shakeri M, Sedighi K (2013) The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell. Ionics 19:1637–1647

    Article  CAS  Google Scholar 

  10. Yousefi S, Ganji DD (2012) Experimental investigation of a passive direct methanol fuel cell with 100 cm2 active areas. Electrochim Acta 85:693–699

    Article  CAS  Google Scholar 

  11. Ting G, Sun J, Deng H, Xie X, Jiao K, Huang X (2016) Investigation of cell orientation effect on transient operation of passive direct methanol fuel cells. Int J Hydrog Energy 41:6493–6507

    Article  Google Scholar 

  12. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007

    Article  CAS  Google Scholar 

  13. Papadimitriou KD, Paloukis F, Neophytides SG, Kallitsis JK (2011) Cross-linking of side chain unsaturated aromatic polyethers for high temperature polymer electrolyte membrane fuel cell applications. Macromolecules 44:4942–4951

    Article  CAS  Google Scholar 

  14. Devrim Y, Erkan S, Bac N, Eroglu I (2012) Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique. Int J Hydrog Energy 37:16748–16758

    Article  CAS  Google Scholar 

  15. Song MF, Lu XW, Li ZF, Liu GH, Yin XY, Wang YX (2016) Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes. Int J Hydrog Energy 41:12069–12081

    Article  CAS  Google Scholar 

  16. Sacca A, Carbone A, Gatto I, Pedicini R, Freni A, Patti A, Passalacqua E (2016) Composites Nafion-titania membranes for polymer electrolyte fuel cell (PEFC) applications at low relative humidity levels: chemical physical properties and electrochemical performance. Polym Test 56:10–18

    Article  CAS  Google Scholar 

  17. Li JC, Zhang YP, Zhang S, Huang XD (2015) Sulfonated polyimide/s-MoS2 composite membrane with high proton selectivity and good stability for vanadium redox flow battery. J Membr Sci 490:179–189

    Article  CAS  Google Scholar 

  18. Chen L, Pu ZJ, Long Y, Tang HL, Liu XB (2014) Synthesis and properties of sulfonated poly(arylene ether nitrile) copolymers containing carboxyl groups for proton-exchange membrane materials. J Appl Polym Sci 131:40213

    Google Scholar 

  19. Gahlot S, Kulshrestha V (2015) Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK Nanohybrid PEM. ACS Appl Mater Interfaces 7:264–272

    Article  CAS  Google Scholar 

  20. Li HQ, Liu XJ, Xu JM, Xu D, Ni HZ, Wang S, Wang Z (2016) Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) for fuel cells by grafting triazole groups onto polymer chains. J Membr Sci 509:173–181

    Article  CAS  Google Scholar 

  21. Lee C-H, Wang Y-Z (2008) Synthesis and characterization of epoxy-based semi-interpenetrating polymer networks sulfonated polyimides proton-exchange membranes for direct methanol fuel cell applications. J Polym Sci, Part A: Polym Chem 46:2262–2276

    Article  CAS  Google Scholar 

  22. Feng M, You Y, Zheng P, Liu J, Jia K, Huang Y, Liu X (2016) Low-swelling proton-conducting multi-layercomposite membranes containing polyaryleneether nitrile and sulfonated carbon nanotubes for fuel cells. Int J Hydrog Energy 41:5113–5122

    Article  CAS  Google Scholar 

  23. Laberty-Robert C, Vallé K, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005

    Article  CAS  Google Scholar 

  24. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites–a review. Prog Polym Sci 38:1232–1261

    Article  CAS  Google Scholar 

  25. Yu HL, Wang TS, Wen B, Lu MM, Xu Z, Zhu CL, Chen YJ, Xue XY, Sun CW, Cao MS (2012) Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J Mater Chem 22:21679–21685

    Article  CAS  Google Scholar 

  26. Zhan YQ, Yang XL, Guo H, Yang J, Meng FB, Liu XB (2012a) Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability. J Mater Chem 22:5602–5608

    Article  CAS  Google Scholar 

  27. Zhan YQ, Yang J, Zhou YK, Yang XL, Meng FB, Liu XB (2012b) Nitrile functionalized graphene for poly(arylene ether nitrile) nanocomposite films with enhanced dielectric permittivity. Mater Lett 78:88–91

    Article  CAS  Google Scholar 

  28. Huang Y, Qi Q, Pan H, Lei X, Liu X (2016) Facile preparation of octahedral Fe3O4/RGO composites and its microwave electromagnetic properties. J Mater Sci Mater Electron 27:9577–9583

    Article  CAS  Google Scholar 

  29. Gahlot S, Sharma PP, Kulshrestha V, Jha PK (2014) SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application. ACS Appl Mater Interfaces 6:5595–5601

    Article  CAS  Google Scholar 

  30. Jiang ZQ, Zhao XS, Manthiram A (2013) Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells. Int J Hydrog Energy 38:5875–5884

    Article  CAS  Google Scholar 

  31. Beydaghi H, Javanbakht M, Kowsari E (2014) Synthesis and characterization of poly(vinyl alcohol)/SulfonatedGraphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs). Ind Eng Chem Res 53:16621–16632

    Article  CAS  Google Scholar 

  32. Xu CX, Cao YC, Kumar R, Wu X, Wang X, Scott K (2011) A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J Mater Chem 21:11359–11364

    Article  CAS  Google Scholar 

  33. Kumar R, Mamlouk M, Scott K (2014) Sulfonated polyether ether ketone-sulfonated graphene oxide composite membranes for polymer electrolyte fuel cell. RSC Adv 4:617–623

    Article  CAS  Google Scholar 

  34. Pu ZJ, Chen L, Long Y, Tong LF, Huang X, Liu XB (2013) Influence of composition on the proton conductivity and mechanicalproperties ofsulfonatedpoly(arylethernitrile) copolymers for proton exchange membranes. J Polym Res 20:281

    Article  Google Scholar 

  35. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  36. Liu J, Xue Y, Dai L (2012) Sulfated graphene oxide as a hole extraction layer in high- performance polymer solar cells. J Phys Chem Lett 3:1928–1933

    Article  CAS  Google Scholar 

  37. Mohtar SS, Ismail AF, Matsuura T (2011) Preparation and characterization of SPEEK/MMT-STA composite membrane for DMFC application. J Membr Sci 371:10–19

    Article  CAS  Google Scholar 

  38. Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, Moaddel H, Bertscha A, Renaud P (2013) Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane. Nano 5:11710–11717

    CAS  Google Scholar 

  39. Buchmuller Y, Wokaun A, Gubler L (2014) Polymer-bound antioxidants in grafted membranes for fuel cells. J Mater Chem A 2:5870–5882

    Article  Google Scholar 

  40. HeoY IH, Kim J (2013) The effect of sulfonated graphene oxide on sulfonated poly (ether ether ketone) membrane for direct methanol fuel cells. J Membr Sci 425–426:11–22

  41. Chien H-C, Tsai L-D, Huang C-P, Kang C-Y, Lin J-N, Chang F-C (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrog Energy 38:13792–13801

  42. Raheela M, Yao K, Gong J, Chen XC, Liu DT, Lin YC, Cui DM, Siddiq M, Tang T (2015) Poly(vinyl alcohol)/GO-MMT nanocomposites: preparation. Structure and Properties Chin J Polym Sci 33:329–338

  43. Zhao X, Zhang QH, Chen DJ (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363

    Article  CAS  Google Scholar 

  44. Li L, Zhang J, Wang YX (2003) Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J Membr Sci 226:159–167

    Article  CAS  Google Scholar 

  45. Bose S, KuilaT NTXH, Kim NH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–843

  46. Shin DW, Lee SY, Kang NR, Lee KH, Guiver MD, Lee YM (2013) Durable sulfonated poly(arylene sulfide sulfone nitrile)s containing naphthalene units for direct methanol fuel cells (DMFCs). Macromolecules 46:3452–3460

    Article  CAS  Google Scholar 

  47. Chen Z, Holmberg B, Li W, Wang X, Deng W, Munoz R, Yan Y (2006) Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater 18:5669–5675

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank for financial support of this work from the National Natural Science Foundation (Nos. 51373028) and University of Electronic Science and Technology of China (A03013023601011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yumin Huang or Xiaobo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, T., Feng, M., Huang, Y. et al. SGO/SPEN-based highly selective polymer electrolyte membranes for direct methanol fuel cells. Ionics 23, 2143–2152 (2017). https://doi.org/10.1007/s11581-017-2057-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2057-2

Keywords

Navigation