Skip to main content

Advertisement

Log in

Influence of composition on the proton conductivity and mechanical properties of sulfonated poly(aryl ether nitrile) copolymers for proton exchange membranes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of sulfonated poly(arylene ether nitrile) (SPEN) copolymers with controlled degrees of sulfonation were successfully synthesized by the direct copolymerization of hydroquinonesulfonic acid potassium salt (SHQ), 2,6-difluorobenzonitrile (DFBN), and different proportions of bisphenols with different structures. Five bisphenols (bisphenol A, phenolphthalein, phenolphthalin, biphenol, and hydroquinone) were investigated for the syntheses of novel copolymers with controlled degrees of sulfonation and different compositions. The composition and structures of the SPEN copolymers were characterized by Fourier transform infrared spectroscopy. Due to their different structural units, the derived copolymers showed different glass transition temperatures of 171–199 °C, and also exhibited high thermal stability, with their 5 % weight loss temperatures ranging from 277 °C to 327 °C. Moreover, they all showed good flexibility and film-forming properties along with excellent tensile strengths of 51–67 MPa in the dry state and 18–41 MPa in the wet state. Solubility tests confirmed that the SPEN copolymers possess good solubility in polar solvents such as NMP, DMAc, DMF, and DMSO. Furthermore, these copolymer membranes exhibited good water uptake values ranging from 30.1 % to 71.2 %, and outstanding ion exchange capacities of 1.27–2.32 mmol g−1. Thus, the membranes presented good proton conductivities of 2.2 × 10−4 to 4.3 × 10−3 S cm−1 at 25 °C and 100 % RH. Furthermore, the SPEN copolymer membranes showed much lower methanol permeabilities and higher selectivities than Nafion 117. All of these attributes indicate that these SPEN copolymers are promising candidates for application in high-temperature proton exchange membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gao Y, Robertson GP, Guiver MD, Mikhailenko SD, Li X, Kaliaguine S (2007) Comparison of PEM properties of copoly(aryl ether ether nitrile)s containing sulfonic acid bonded to naphthalene in structurally different ways. Macromolecules 40:1512–1520

    Article  CAS  Google Scholar 

  2. Miyatake K, Hirayama D, Bae B, Watanabe M (2012) Block poly(arylene ether sulfone ketone)s containing densely sulfonated linear hydrophilic segments as proton conductive membranes. Polym Chem 3:2517–2522

    Article  CAS  Google Scholar 

  3. Mauritz KA, Moore RB (2004) State of understanding of nafion. Chem Rev 104:4535–4585

    Article  CAS  Google Scholar 

  4. Lin HL, Yeh SH, Yu TL, Chen LC (2009) Silicate and zirconium phosphate modified Nafion/PTFE composite membranes for high temperature PEMFC. J Polym Res 16:519–527

    Article  CAS  Google Scholar 

  5. Yu TL, Lin HL, Shen KS, Huang LN, Chang YC, Jung GB, Huang JC (2004) Nafion/PTFE composite membranes for fuel cell applications. J Polym Res 11:217–224

    Google Scholar 

  6. Li QF, He RH, Jensen JO, Bjerrum NJ (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mater 15:4896–4915

    Article  CAS  Google Scholar 

  7. Li WM, Cui ZM, Zhou XC, Zhang SB, Dai L, Xing W (2008) Sulfonated poly(arylene-co-imide)s as water stable proton exchange membrane materials for fuel cells. J Memb Sci 315:172–179

    Google Scholar 

  8. Bai H, Ho WSW (2011) Recent developments in fuel-processing and proton exchange membranes for fuel cells. Polym Int 60:26–41

    Article  CAS  Google Scholar 

  9. Matsumura S, Hlil AR, Lepiller C, Gaudet J, Guay D, Shi ZQ, Holdcroft S, Hay AS (2008) Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end groups: novel branched poly(ether-ketone)s. Macromolecules 41:281–284

    Article  CAS  Google Scholar 

  10. Gao Y, Robertson GP, Guiver MD, Wang GQ, Jian XG, Mikhailenko SD, Li X, Kaliaguine S (2006) Sulfonated copoly(phthalazinone ether ketone nitrile)s as proton exchange membrane materials. J Membrane Sci 278:26–34

    Article  CAS  Google Scholar 

  11. Gao Y, Robertson GP, Guiver MD, Mikhailenko SD, Li X, Kaliaguine S (2004) Synthesis of poly(arylene ether ether ketone ketone) copolymers containing pendant sulfonic acid groups bonded to naphthalene as proton exchange membrane materials. Macromolecules 37:6748–6754

    Article  CAS  Google Scholar 

  12. Kim DS, Robertson GP, Guiver MD (2008) Comb-shaped poly(arylene ether sulfone)s as proton exchange membranes. Macromolecules 41:2126–2134

    Article  CAS  Google Scholar 

  13. Xiao GY, Sun GM, Yan DY, Zhu PF, Tao P (2002) Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization. Polymer 43:5335–5339

    Article  CAS  Google Scholar 

  14. Xiao GY, Sun GM, Yan DY (2002) Polyelectrolytes for fuel cells made of sulfonated poly(phthalazinone ether ketone)s. Macromol Rapid Comm 23:488–492

    Article  CAS  Google Scholar 

  15. Zhu XB, Zhang HM, Liang YM, Zhang Y, Luo QT, Bi C, Yi BL (2007) Challenging reinforced composite polymer electrolyte membranes based on disulfonated poly(arylene ether sulfone)-impregnated expanded PTFE for fuel cell applications. J Mater Chem 17:386–397

    Article  CAS  Google Scholar 

  16. Kim DS, Shin KH, Park HB, Chung YS, Nam SY, Lee YM (2006) Synthesis and characterization of sulfonated poly(arylene ether sulfone) copolymers containing carboxyl groups for direct methanol fuel cells. J Membrane Sci 278:428–436

    Article  CAS  Google Scholar 

  17. Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE (2002) Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J Membrane Sci 197:231–242

    Article  CAS  Google Scholar 

  18. Jouanneau J, Mercier R, Gonon L, Gebel G (2007) Synthesis of sulfonated polybenzimidazoles from functionalized monomers: preparation of ionic conducting membranes. Macromolecules 40:983–990

    Article  CAS  Google Scholar 

  19. Li NW, Zhang SB, Liu J, Zhang F (2008) Synthesis and properties of sulfonated poly[bis(benzimidazo-benzisoquinolinones)] as hydrolytically and thermooxidatively stable proton conducting ionomers. Macromolecules 41:4165–4172

    Article  CAS  Google Scholar 

  20. Zhan YQ, Yang XL, Guo H, Yang J, Meng FB, Liu XB (2012) Cross-linkable nitrile functionalized graphene oxide/poly(arylene ethernitrile) nanocomposite films with high mechanical strength and thermal stability. J Mater Chem 22:5602–5608

    Article  CAS  Google Scholar 

  21. Yang XL, Zhan YQ, Yang J, Zhong JC, Zhao R, Liu XB (2012) Synergetic effect of cyanogen functionalized carbon nanotube and graphene on the mechanical and thermal properties of poly(arylene ether nitrile). J Polym Res 19:9806

    Article  Google Scholar 

  22. Sumner MJ, Harrison WL, Weyers RM, Kim YS, McGrath JE, Riffle JS, Brink A, Brink MH (2004) Novel proton conducting sulfonated poly(arylene ether) copolymers containing aromatic nitriles. J Membr Sci 239:199–211

    Article  CAS  Google Scholar 

  23. Tang HL, Yang J, Zhong JC, Zhao R, Liu XB (2011) Synthesis and dielectric properties of polyarylene ether nitriles with high thermal stability and high mechanical strength. Mater Lett 65:2758–2761

    Article  CAS  Google Scholar 

  24. Harrison WL, Wang F, Mecham JB, Bhanu VA, Hill M, Kim YS, McGrath JE (2003) Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. J Polym Sci Pol Chem 41:2264–2276

    Google Scholar 

  25. Lin CW, Huang YF, Kannan AM (2007) Cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride)-based semi-interpenetrating network as proton-conducting membranes for direct methanol fuel cells. J Power Sources 171:340–347

    Google Scholar 

  26. Li C, Tang AB, Zou YB, Liu XB (2006) Preparation and dielectric properties of polyarylene ether nitriles/TiO2 nanocomposite film. Mater Lett 59:59–63

    Article  Google Scholar 

  27. Tang HL, Yang J, Zhong JC, Zhao R, Liu XB (2011) Synthesis of high glass transition temperature fluorescent polyarylene ether nitrile copolymers. Mater Lett 65:1703–1706

    Article  CAS  Google Scholar 

  28. Yang J, Yang XL, Zou YK, Zhan YQ, Zhao R, Liu XB (2012) Synthesis and crosslinking behavior of a soluble, crosslinkable, and high Young modulus poly(arylene ether nitriles) with pendant phthalonitriles. J Appl Polym Sci 126:1129–1135

    Google Scholar 

  29. Gao Y, Robertson GP, Guiver MD, Mikhailenko SD, Li X, Kaliaguine S (2005) Synthesis of copoly(aryl ether ether nitrile)s containing sulfonic acid groups for PEM application. Macromolecules 38:3237–3245

    Google Scholar 

  30. Ma CS, Zhang L, Mukerjee S, Ofer D, Nair B (2003) An investigation of proton conduction in select PEM’s and reaction layer interfaces design for elevated temperature operation. J Membr Sci 218:123–136

    Article  Google Scholar 

  31. Jung BS, Kim BY, Yang JM (2004) Transport of methanol and protons through partially sulfonated polymer blend membranes for direct methanol fuel cell. J Membr Sci 245:61–69

    Article  CAS  Google Scholar 

  32. Kim DS, Park HB, Lee YM (2005) Synthesis of sulfonated poly(imidoaryl ether sulfone) membranes for polymer electrolyte membrane fuel cell. J Polym Sci Pol Chem 43:5620–5631

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of this work provided by the National Natural Science Foundation (nos. 51173021, 51373028) and the “863” National Major Program of High Technology (no. 2012AA03A212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, Z., Chen, L., Long, Y. et al. Influence of composition on the proton conductivity and mechanical properties of sulfonated poly(aryl ether nitrile) copolymers for proton exchange membranes. J Polym Res 20, 281 (2013). https://doi.org/10.1007/s10965-013-0281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0281-7

Keywords

Navigation