Skip to main content

Advertisement

Log in

In situ synthesis of porous Co3O4 polyhedra/carbon nanotubes heterostructures for highly efficient supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Currently, supercapacitors (SCs) have been applied widely in energy storage field. In this work, porous Co3O4 polyhedra (PCP)/carbon nanotubes (CNTs) heterostructures were designed by in situ implanting CNTs into ZIF-67 with a subsequent pyrolysis process and used for SCs. Their morphology, structure, and electrochemical performance were characterized by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction spectroscopy, nitrogen adsorption-desorption, thermogravimetry analysis, cyclic voltammogram, galvanostatic charge-discharge, and electrochemical impedence spectra. The results show that the specific capacitance and cycling stability of the PCP electrodes are both increased after CNTs doping. As the temperature is increased to 350 °C, the obtained porous PCP/CNTs heterostructure exhibits the maximum specific capacitance (592 F g−1 at 1 A g−1) with long-term stability due to its high specific surface area and good electrical conductivity. The PCP/CNTs electrode should be a promising candidate for highly efficient electrode materials of SCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna P-L, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nano 5:651–654

    Article  CAS  Google Scholar 

  2. Wei XJ, Gou H, Mo ZL, Hu R, Wang YW (2016a) Hierarchically structured nitrogen-doped carbon for advanced supercapacitor electrode materials. Ionics 22:1197–1207

    Article  CAS  Google Scholar 

  3. Zhao Y, Ran W, He J, Huang Y, Liu Z, Liu W, Tang Y, Zhang L, Gao D, Gao F (2015a) High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. Small 11:1310–1319

    Article  CAS  Google Scholar 

  4. Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F (2011) Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res 4:870–881

    Article  CAS  Google Scholar 

  5. Zhao Y, Zhang Z, Ren Y, Ran W, Chen X, Wu J, Gao F (2015b) Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode. J Power Sources 286:1–9

    Article  CAS  Google Scholar 

  6. Zhi M, Yang F, Meng F, Li M, Manivannan A, Wu N (2014) Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires. ACS Sustain Chem Eng 2:1592–1598

    Article  CAS  Google Scholar 

  7. Xu J, Zhang R, Wu C, Zhao Y, Ye X, Ge S (2014) Electrochemical performance of graphitized carbide-derived-carbon with hierarchical micro- and meso-pores in alkaline electrolyte. Carbon 74:226–236

    Article  CAS  Google Scholar 

  8. Duay J, Sherrill SA, Gui Z, Gillette E, Lee SB (2013) Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7:1200–1214

    Article  CAS  Google Scholar 

  9. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88

    Article  CAS  Google Scholar 

  10. Abbas A, Hanif K, Mohammad BG, Hamid H, Afshin P (2015) Facile electrostatic coprecipitation of f-SWCNT/Co3O4 nanocomposite as supercapacitor material. Ionics 21:515–523

    Article  Google Scholar 

  11. Zhao Y, Ran W, Xiong D-B, Zhang L, Xu J, Gao F (2014) Synthesis of Sn-doped Mn3O4/C nanocomposites as supercapacitor electrodes with remarkable capacity retention. Mater Lett 118:80–83

    Article  CAS  Google Scholar 

  12. Yao M, Hu Z, Xu Z, Liu Y (2015) Template synthesis of 1D hierarchical hollow Co3O4 nanotubes as high performance supercapacitor materials. J Alloys Compd 644:721–728

    Article  CAS  Google Scholar 

  13. Zhao Y, Zhang X, He J, Zhang L, Xia M, Gao F (2015c) Morphology controlled synthesis of nickel cobalt oxide for supercapacitor application with enhanced cycling stability. Electrochim Acta 174:51–56

    Article  CAS  Google Scholar 

  14. Chen Y, Wang JW, Shi XC, Chen BZ (2015) Electrochemical fabrication of porous manganese-cobalt oxide films for electrochemical capacitors. J Appl Electrochem 45:495–501

    Article  CAS  Google Scholar 

  15. Kumar N, Yu YC, Lu YH, Tseng TY (2016) Fabrication of carbon nanotube/cobalt oxide nanocomposites via electrophoretic deposition for supercapacitor electrodes. J Mater Sci 51:2320–2329

    Article  CAS  Google Scholar 

  16. Zhang J, Yi XB, Wang XC, Ma J, Liu S, Wang XJ (2015a) Nickel oxide grown on carbon nanotubes/carbon fiber paper by electrodeposition as flexible electrode for high-performance supercapacitors. J Mater Sci: Mater in Electron 26:7901–7908

    CAS  Google Scholar 

  17. Ju P, Jiang L, Lu TB (2013) An unprecedented dynamic porous metal-organic framework assembled from fivefold interlocked closed nanotubes with selective gas adsorption behaviors. Chem Commun 49:1820–1822

    Article  CAS  Google Scholar 

  18. Teufel J, Oh H, Hirscher M, Wahiduzzaman M, Zhechkov L, Kuc A, Heine T, Denysenko D, Volkmer D (2013) MFU-4 a metal-organic framework for highly effective H2/D2 separation. Adv Mater 25:635–639

    Article  CAS  Google Scholar 

  19. Xu XT, Wang M, Liu Y, Lu T, Pan L (2016) Metal–organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization. J Mater Chem A 4:5467–5473

    Article  CAS  Google Scholar 

  20. Huang Y, Zhang Y, Chen X, Wu D, Yi Z, Cao R (2014) Bimetallic alloy nanocrystals encapsulated in ZIF-8 for synergistic catalysis of ethylene oxidative degradation. Cheml Commun 50:10115–10117

    Article  CAS  Google Scholar 

  21. Ke F, Yuan YP, Qiu LG, Shen YH, Xie AJ, Zhu JF, Tian XY, Zhang LD (2011) Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery. J Mater Chem 21:3843–3848

    Article  CAS  Google Scholar 

  22. Combelles C, Doublet ML (2016) Structural, magnetic and redox properties of a new cathode material for Li-ion batteries: the iron-based metal organic framework. Ionics 14:279–283

    Article  Google Scholar 

  23. Choi KM, Jeong HM, Park JH, Zhang Y-B, Kang JK, Yaghi OM (2014) Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8:7451–7457

    Article  CAS  Google Scholar 

  24. Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B (2016a) Metal-organic frameworks for energy storage: batteries and supercapacitors. Coord Chem Rev 307:361–381

    Article  CAS  Google Scholar 

  25. Xiu Z, Alfaruqi MH, Gim J, Song J, Kim S, Duong PT, Baboo JP, Mathew V, Kim J (2016) MOF-derived mesoporous anatase TiO2 as anode material for lithium-ion batteries with high rate capability and long cycle stability. J Alloys Compd 674:174–178

    Article  CAS  Google Scholar 

  26. Maiti S, Pramanik A, Mahanty S (2014) Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide. Chem Commun 50:11717–11720

    Article  CAS  Google Scholar 

  27. Zhu T, Chen JS, Lou XW (2010) Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. J Mater Chem 20:7015–7020

    Article  CAS  Google Scholar 

  28. Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou XW (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ Sci 5:7883–7887

    Article  CAS  Google Scholar 

  29. Cheng H, Lu ZG, Deng JQ, Chung CY, Zhang K, Li YY (2010) A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res 3:895–901

    Article  CAS  Google Scholar 

  30. Li GC, Hua XN, Liu PF, Xie YX, Han L (2015a) Porous Co3O4 microflowers prepared by thermolysis of metal-organic framework for supercapacitor. Mater Chem Phys 168:127–131

    Article  CAS  Google Scholar 

  31. Zhang YZ, Wang Y, Xie YL, Cheng T, Lai WY, Pang H, Huang W (2014) Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 6:14354–14359

    Article  CAS  Google Scholar 

  32. Zheng Y, Li Z, Xu J, Wang T, Liu X, Duan X, Ma Y, Zhou Y, Pei C (2016) Multi-channeled hierarchical porous carbon incorporated Co3O4 nanopillar arrays as 3D binder-free electrode for high performance supercapacitors. Nano Energy 20:94–107

    Article  CAS  Google Scholar 

  33. Jiang JQ, Wei FX, Yu GX, Sui YW (2015) Co3O4 electrode prepared by using metal-organic framework as a host for supercapacitors. J Nanomater 16:1–6

    Google Scholar 

  34. He S, Li Z, Wang J, Gao J, Ma L, Yang Z, Yang S (2016) MOF-derived NixCo1-x (OH)2 composite microspheres for high-performance supercapacitors. RSC Adv 6:49478–49486

    Article  CAS  Google Scholar 

  35. Lang J, Yan X, Xue Q (2011) Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors. J Power Sources 196:7841–7846

    Article  CAS  Google Scholar 

  36. Wang X, Li M, Chang Z, Yang Y, Wu Y, Liu X (2015) Co3O4@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors. ACS Appl Mat Interfaces 7:2280–2285

    Article  CAS  Google Scholar 

  37. Huang G, Zhang F, Du X, Qin Y, Yin D, Wang L (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9:1592–1599

    Article  CAS  Google Scholar 

  38. Rahul B, Anh P, Wang B, Carolyn K, Hiroyasu F, Michael OK, Omar MY (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943

    Article  Google Scholar 

  39. Wang MQ, Zhang Y, Bao SJ, Yu YN, Ye C (2016b) Ni(II)-based metal-organic framework anchored on carbon nanotubes for highly sensitive non-enzymatic hydrogen peroxide sensing. Electrochim Acta 190:365–370

    Article  CAS  Google Scholar 

  40. Li T, Li SH, Zhang BW, Wang B, Nie DY, Chen Z, Yan Y, Wan N, Zhang WF (2015b) Supercapacitor electrode with a homogeneously Co3O4-coated multiwalled carbon nanotube for a high capacitance. Nanoscale Res Lett 10:1–7

    Article  Google Scholar 

  41. Zhang L, Wang X, Wang R, Hong M (2015b) Structural evolution from metal-organic framework to hybrids of nitrogen-doped porous carbon and carbon nanotubes for enhanced oxygen reduction activity. Chem Mater 27:7610–7618

    Article  CAS  Google Scholar 

  42. Liu XX, Shi CD, Zhai CW, Cheng ML, Liu Q, Wang GX (2016) Cobalt-based layered metal- organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl Mater Interfaces 8:4585–4591

    Article  CAS  Google Scholar 

  43. Wei FX, Jiang JQ, Yu GX, Sui YW (2015) A novel cobalt-carbon composite for the electrochemical supercapacitor electrode material. Mater Lett 146:20–22

    Article  CAS  Google Scholar 

  44. Gao YL, Wu JX, Zhang W, Tan YY, Gao J, Zhao JC, Tang BHJ (2015) New J Chem 39:94–97

    Article  CAS  Google Scholar 

  45. Wang H, Shi L, Yan T, Zhang J, Zhong Q, Zhang D (2014) Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. J Mater Chem A 2:4739–4750

    Article  CAS  Google Scholar 

  46. Zhang J, Wang R, Liu EZ, Gao XF, Sun ZH, Xiao FS, Frank G, Su DS (2012) Spherical structures composed of multiwalled carbon nanotubes: formation mechanism and catalytic performance. Angew Chem Int Ed 51:7581–7585

    Article  CAS  Google Scholar 

  47. Patricia H, Fabrice S, Stefan W, Thomas D, Daniela H, Guillaume M, Alexandre V, Marco D, Olivier D, Emmanuel M, Norbert S, Yaroslav F, Dmitry P, Christian R, Gerard F, Christian S (2011) How linker’s modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88. J Am Chem Soc 133:17839–17847

    Article  Google Scholar 

  48. Zhu QL, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43:5468–5512

    Article  CAS  Google Scholar 

  49. Rajesh M, Vediyappan V, Chen SM, Arumugam M, Lo AY, Chueh YL (2015) Honeycomb-like porous carbon-cobalt oxide nanocomposite for high-performance enzymeless glucose sensor and supercapacitor applications. ACS Appl Mat Interfaces 7:15812–15820

    Article  Google Scholar 

  50. Wei XJ, Gou H, Mo ZL, Guo RB, Hu RR, Wang YW (2016b) Hierarchically structured nitrogen-doped carbon for advanced supercapacitor electrode materials. Ionics 22:1197–1207

    Article  CAS  Google Scholar 

  51. Gao YY, Chen SL, Cao DX, Wang GL, Yin JL (2010) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195:1757–1760

    Article  CAS  Google Scholar 

  52. Huang ZY, Zhang Z, Qi X, Ren XH, Xu GH, Wan PB, Sun XM, Zhang H (2016) Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. Nanoscale 8:13273–13279

    Article  CAS  Google Scholar 

  53. Allagui A, Alawadhi H, Alkaaby M, Gaidi M, Mostafa K, Abdulaziz Y (2015) Mott-Schottky analysis of flower-like ZnO microstructures with constant phase element behavior. Appl Mater Sci 1:139–145

    Google Scholar 

  54. Tang HL, Xiong M, Qu DY, Liu D, Zhang ZJ, Xie ZZ, Wei X, Tu WM, Qu DY (2015) Enhanced supercapacitive performance on TiO2@C coaxial nano-rod array through a bio-inspired approach. Nano Energy 15:75–82

    Article  CAS  Google Scholar 

  55. Hua ZM, Xiao X, Chen C, Li TQ, Huang L, Zhang CF, Su J, Miao L, Jiang JJ, Zhang YR, Zhou J (2015) Al-doped α-MnO2 for highmass-loading pseudocapacitor with excellent cycling stability. Nano Energy 11:226–234

    Article  Google Scholar 

  56. Umeshbabu E, Rajeshkhanna G, Rao RG (2016) Effect of solvents on the morphology of NiCo2O4/graphene nanostructures for electrochemical pseudocapacitor application. J Solid State Electrochem 7:1837–1844

    Article  Google Scholar 

  57. Wang KB, Yi XY, Luo XF, Shi Y, Xu JY (2016c) Fabrication of Co3O4 pseudocapacitor electrodes from nanoscale cobalt-organic frameworks. Polyhedron 109:26–32

    Article  CAS  Google Scholar 

  58. Chen W, Rakhi RB, Hu LB, Xie X, Cui Y, Alshareef HN (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11:5165–5172

    Article  CAS  Google Scholar 

  59. Wang ZF, Han Y, Zeng YX, Qie YL, Wang YC, Zheng DZ, Lu XH, Tong YX (2016d) Activated carbon fiber paper with exceptional capacitive performance as a robust electrode for supercapacitors. J Mater Chem A 4:5828–5833

    Article  CAS  Google Scholar 

  60. Lü YY, Zhan WW, He Y, Wang YT, Kong XJ, Kuang Q, Xie ZX, Zheng LS (2014) MOF- templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl Mat Interfaces 6:4186–4195

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Basic Research Project of Shanghai Science and Technology Committee (No. 14JC1491000) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Lu.

Electronic supplementary material

ESM 1

(DOC 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Wang, M., Li, T. et al. In situ synthesis of porous Co3O4 polyhedra/carbon nanotubes heterostructures for highly efficient supercapacitors. Ionics 23, 2175–2183 (2017). https://doi.org/10.1007/s11581-017-2042-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2042-9

Keywords

Navigation