Skip to main content
Log in

Synthesis, characterization, and cell performance of Li0.5FeV1.5O4

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A Li0.5FeV1.5O4 sample was synthesized using sol-gel route. The X-ray diffraction study indicates formation of spinel phase (with Fd3m space group) for this sample. LiO4, LiO6, and V-O bonds were identified from the Raman spectrum, while LiO4 and Fe-O bonds were identified from the FTIR spectrum of this sample phase. The FESEM study indicates formation of inhomogeneous grains. The surface area of 74.39 m2/g was estimated from the Brunauer-Emmett-Teller (BET) surface area analysis technique. The cyclic voltammetry study of Li0.5FeV1.5O4 indicates an anodic peak at 2.1 V while a cathodic peak at 1.98 V. The charge-discharge study exhibits two voltage plateaus respectively at 2.1 and at 4 V. Stable electrochemical capacity of 40 mAh/g for Li0.5FeV1.5O4 was found for 30 cycles. The electrochemical impedance spectroscopy study indicates smaller bulk resistance and higher ionic diffusion, i.e., less Warburg impedance for this phase. An energy density of 89 Wh/kg, a power density of 33 W/kg, and a 90% Coulombic efficiency was achieved with relatively good cyclic stability from Li0.5FeV1.5O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shukla AK, Prem Kumar T (2008) Materials for next-generation lithium batteries. Curr Sci 94:314–331

    CAS  Google Scholar 

  2. Horn YS, Croguennec L, Delmas C, Nelson EC, O’Keefe MA (2003) Atomic resolution of lithium ions in LiCoO2. Nat Mater 2:464–467

    Article  Google Scholar 

  3. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  4. Gaberscek M, Kuzma M, Jamnik J (2007) Electrochemical kinetics of porous, carbon decorated LiFePO4 cathods: separation of wiring effects from solid state diffusion. Phys Chem Chem Phys 9:1815–1820

    Article  CAS  Google Scholar 

  5. Wang GX, Needhama S, Yao J, Wang JZ, Liu RS, Liu HK (2006) A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries. J Power Sources 159:282–286

    Article  CAS  Google Scholar 

  6. Yi T-F, Li X-Y, Liu H, Shu J, Zhu Y-R, Zhu R-S (2012) Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery. Ionics 18:529–539

    Article  CAS  Google Scholar 

  7. Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160

    Article  CAS  Google Scholar 

  8. Nyten A, Kamali S, Haggstrom L, Gustafsson T, Thomas JO (2006) The lithium extraction/insertion mechanism in Li2FeSiO4. J Mater Chem 16:2266–2272

    Article  CAS  Google Scholar 

  9. Dominko R, Arcon I, Kodre A, Hanzel D, Gaberscek M (2009) In-situ XAS study on Li2MnSiO4 and Li2FeSiO4 cathode materials. J Power Sources 189:51–58

    Article  CAS  Google Scholar 

  10. Nishimura SI, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A (2008) Structure of Li2FeSiO4. J Am Chem Soc 130:13212–13213

    Article  CAS  Google Scholar 

  11. Sirisopanaporn C, Boulineau A, Hanzel D, Dominko R, Budic B, Armstorng AR, Bruce PG, Masquelier C (2010) Crystal structure of a new polymorph of Li2FeSiO4. Inorg Chem 49:7446–7451

    Article  CAS  Google Scholar 

  12. Tao T, Rahman MM, Ramireddy T, Sunarso J, Chen Y, Glushenkov AM (2014) Preparation of composite electrodes with carbon nanotubes for lithium-ion batteries by low-energy ball milling. RSC Adv 4:36649–36655

    Article  CAS  Google Scholar 

  13. Robertson AD, Tukamoto H, Irvine JTS (1999) Li1 + xFe1 − 3xTi1 + 2x O4 (0.0 ≤ x ≤ 0.33) based spinels: possible negative electrode materials for future Li-ion batteries. J Electrochem Soc 146(11):3958–3962

    Article  CAS  Google Scholar 

  14. Barker J, Saidi MY, Swoyer JL United States Patent, Patent No. US 6,720,112 B2, Date of Patent: Apr. 13, 2004

  15. Rao CV, Rambabu B (2010) Nanocrystalline LiCrTiO4 as anode for asymmetric hybrid supercapacitor. Solid State Ionics 181:839–843

    Article  CAS  Google Scholar 

  16. Chakrabarti S, Thakur AK, Biswas K (2013) DFT analysis of lithium de-intercalation in Li2FeVO4. Ionics 19:1515–1526

    Article  CAS  Google Scholar 

  17. Liivat A, Thomas JO (2010) A DFT study of VO4 −3 polyanion substitution into the Li-ion battery cathode material Li2FeSiO4. Comput Mater Sci 50:191–197

    Article  CAS  Google Scholar 

  18. Hao H, Zhang J, Liu X, Huang T, Yu A (2013) Mesoporous Li2FeSiO4/C as cathode material for lithium ion battery. Int J Electrochem Sci 8:10976–10986

    CAS  Google Scholar 

  19. Hwang BJ, Tsai YW, Fey GTK, Lee JF (2001) Effect of lanthanum dopant on the structural and electrical properties of LiCoVO4 cathode materials investigated by EXAFS. J Power Sources 97-98:551–554

    Article  CAS  Google Scholar 

  20. Padhi AK, Archibald WB, Nanjundaswamy KS, Goodenough JB (1997) Ambient and high-pressure structures of LiMnVO4 and its Mn3+/Mn2+ redox energy. J Solid State Chem 128:267–272

    Article  CAS  Google Scholar 

  21. Prakash D, Masuda Y, Sanjeeviraja C (2012) Structural and electrical studies of LiMnVO4 cathode material for rechargeable lithium batteries. Ionics 18:31–37

    Article  CAS  Google Scholar 

  22. Fey GTK, Chen KS (1999) Synthesis, characterization, and cell performance of LiNiVO4 cathode materials prepared by a new solution precipitation method. J Power Sources 81–82:467–471

    Article  Google Scholar 

  23. Liu Q, Liu H, Zhou X, Cong C, Zhang K (2005) A soft chemistry synthesis and electrochemical properties of LiV3O8 as cathode material for lithium secondary batteries. Solid State Ionics 176:1549–1554

    Article  CAS  Google Scholar 

  24. Lisi M, Jach D, Carewska M, Pasquali M, Passerini S Low-temperature sol-gel LiV3O8 cathodes in polymer electrolyte batteries, Conference abstract

  25. Song H, Liu Y, Zhang C, Liu C, Cao G (2015) Mo-doped LiV3O8 nanorod-assembled nanosheets as a high performance cathode material for lithium ion batteries. J Mater Chem A 3:3547–3558

    Article  CAS  Google Scholar 

  26. Armstrong AR, Lyness C, Panchmatia PM, Islam MS, Bruce PG (2011) The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2. Nat Mater 10:223–229

    Article  CAS  Google Scholar 

  27. Xiao PF, Lai MO, Lu El (2013) Transport and Electrochimical Properties high potential tavorite LiVPO4F. Solid State Ionics 242:10–19

  28. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    Article  CAS  Google Scholar 

  29. Barker J, Saidi MY, Swoyer JL (2004) Electrochemical insertion properties of lithium vanadium titanate, LiVTiO4. Solid State Ionics 167:413–418

    Article  CAS  Google Scholar 

  30. Liu J, Lu P-J, Liang S, Liu J, Wang W, Lei M, Tang S, Yang Q (2015) Ultrathin Li3VO4 nanoribbon/grapheme sandwich-like nanostructures with ultrahigh lithium ion storage properties. Nano Energy 12:709–724

    Article  CAS  Google Scholar 

  31. Ren W, Zheng Z, Xu C, Niu C, Wei Q, An Q, Zhao K, Yan M, Qin M, Mai L (2016) Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries. Nano Energy 25:145–153

    Article  Google Scholar 

  32. Ren W, Yao X, Niu C, Zheng Z, Zhao K, An Q, Wei Q, Yan M, Zhang L, Mai L (2016) Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. Nano Energy 28:216–223

    Article  CAS  Google Scholar 

  33. Baddour-Hadjean R, Pereira-Ramos J-P (2010) Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110:1278–1319

    Article  CAS  Google Scholar 

  34. Leonidov IA, Leonidova ON, Perelyaeva LA, Samigullina RF, Kovyazina SA, Patrakeev MV (2003) Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12. Phys Solid State 45(11):2183–2188

    Article  CAS  Google Scholar 

  35. Julien CM, Massot M (2003) Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel. Mater Sci Eng B97:217–230

    Article  CAS  Google Scholar 

  36. Gillot B, Jemmali F (1986) A. Rousset, infrared spectrs of the oxidation products of submicronic synthetic Titanomagnetites. Mater Chem Phys 15:577–588

    Article  CAS  Google Scholar 

  37. Fu R, Li Y, Yang H, Zhang Y, Chenga X (2013) Improved performance of Li2FeSiO4/C composite with highly rough mesoporous morphology. J Electrochem Soc 160(5):A3048–A3053

    Article  CAS  Google Scholar 

  38. Li N, Gong H, Qian Y (2013) Orthorhombic γ-LiV2O5 as cathode materials in lithium ion batteries: synthesis and property. Chin J Chem Phys 26:597–600

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamik Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, S., Thakur, A.K. & Biswas, K. Synthesis, characterization, and cell performance of Li0.5FeV1.5O4 . Ionics 23, 1985–1993 (2017). https://doi.org/10.1007/s11581-017-2034-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2034-9

Keywords

Navigation