Skip to main content
Log in

Morphological, photovoltaic, and electron transport properties of In2O3-based DSSC with different concentrations of MWCNTs

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This study focuses on the influence of loading MWCNTs in In2O3-based DSSCs. In2O3-MWCNTs were prepared by sol-gel method via spin coating technique and annealed at 450 °C. The structural, morphology, and electrical properties of the photoanodes were characterized by means of XRD, AFM and FESEM, and J-V curve measurement and EIS properties, respectively. Incorporation of MWCNTs in In2O3 improved the J sc and V oc of the cell. However, excess loading of MWCNTs in In2O3 caused a serious aggregation of MWCNTs that increased the recombination rate. Thus, In2O3-MWCNTs with 0.3 % of MWCNTs achieved the highest PCE of 1.23 % with large surface area for efficient dye adsorption. Moreover, In2O3-MWCNTs(0.3%) exhibited large D eff about 25.7 × 10−3 cm2 s−1 with low recombination effect that increased the PCE. This study suggests an optimum MWCNT incorporation of 0.3 % in the photoanode by sol-gel synthesis method of developing In2O3-based nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Burschka J, Pellet N, Moon SJ, Baker RH, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319

    Article  CAS  Google Scholar 

  3. Abdullah H, Atiqah NA, Omar A, Asshaari I, Mahalingam S, Razali Z, Shaari S, Mandeep JS, Misran H (2015) Structural, morphological, electrical and electron transport studies in ZnO-rGO (wt% = 0.01, 0.05, and 01) based dye-sensitized solar cell. J Mater Sci Mater Electron 26:2263–2270

    Article  CAS  Google Scholar 

  4. Mahalingam S, Abdullah H, Shaari S, Muchtar A, Asshari I (2015) Structural, morphological, and electron transport studies of annealing dependent In2O3 dye-sensitized solar cell. Sci World J. doi:10.1155/2015/403848

  5. Mahalingam S, Abdullah H, Omar A, Nawi NAM, Shaari S, Muchtar A, Asshari I (2015) Effect of SnO2/MWCNT-based DSSC performance with various annealing temperatures. Adv Mater Res 1107:649–654

    Article  Google Scholar 

  6. Yao DD, Rani RA, O’Mullane AP, Kalantar-zadeh K, Ou JZ (2013) High performance electrochromic devices based on anodized nanoporous Nb2O5. J Phys Chem C 118:476–481

    Article  Google Scholar 

  7. Zhang B et al. (2013) Turning indium oxide into a superior electrocatalyst: deterministic heteroatoms. Sci Rep 3:3109

    Google Scholar 

  8. Miao C, Chen C, Dai Q, Xu L, Song H (2015) Dysprosium, holmium and erbium ions doped indium oxide nanotubes as photoanodes for dye sensitized solar cells and improved device performance. J Colloid Interface Sci 440:162–167

    Article  CAS  Google Scholar 

  9. Sharma R, Mane RS, Min S-K, Han S-H (2009) Optimization of growth of In2O3 nano-spheres thin films by electrodeposition for dye-sensitized solar cells. J Alloys Compd 479:840–843

    Article  CAS  Google Scholar 

  10. Hara K, Zhao Z-G, Cui Y, Miyauchi M, Miyashita M, Mori S (2011) Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells. Langmuir 27:12730–12736

    Article  CAS  Google Scholar 

  11. Razali MZ, Abdullah H, Shaari S, Taha MR, Omar A, Yarmo MA (2014) Effect of heat treatment on CNT/TiO2 photoelectrode for dye-sensitized solar cells application. J Nanopart Res 28:151–162

    Google Scholar 

  12. Chang W-C, Cheng Y-Y, Yu W-C, Yao Y-C, Lee C-H, Ko H-H (2012) Enhancing performance of ZnO dye-sensitized solar cells by incorporation of multiwalled carbon nanotubes. Nanoscale Res Lett 7:1–7

    Article  Google Scholar 

  13. Yen C-Y, Lin Y-F, Liao S-H, Weng C-C, Huang C-C, Hsiao Y-H, Ma C-CM, Chang M-C, Shao H, Tsai M-C, Hsieh C-K, Tsai C-H, Weng F-B (2008) Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells. Nanotechnology 19:375305

    Article  Google Scholar 

  14. Abdullah H, Razali MZ, Shaari S, Taha MR (2014) Enhancement of dye-sensitized solar cell efficiency using carbon nanotube/TiO2 nanocomposite thin films fabricated at various annealing tempeatures. Electron Mater Lett 10:611–619

    Article  CAS  Google Scholar 

  15. Razali MZ, Abdullah H, Asshari I (2015) Morphological effect of CNT/Ti nanocomposite photoelectrodesdye-sensitized solar cell on photovoltaic performance with various annealing temperatures. Int J Photoenergy. doi:10.1155/2015/501978

  16. Omar A, Abdullah H, Yamo MA, Shaari S, Taha MR (2013) Structural and morphological studies of zinc oxide incorporating single-walled carbon nanotubes as a nanocomposite thin film. J Mater Sci-Mater EL 24:3603–3610

    Article  Google Scholar 

  17. Sawatsuk T, Chindaduang A, Sae-Kung C, Pratontep S, Tumcharern G (2009) Dye-sensitized solar cells based on TiO2–MWCNTs composite electrodes: performance improvement and their mechanisms. Diam Relat Mater 18:524–527

    Article  CAS  Google Scholar 

  18. Aqel A, El-Nour KM, Ammar RA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arab J Chem 5:1–23

    Article  CAS  Google Scholar 

  19. Ebbesen TW (1996) Carbon nanotubes. Phys Today 49:26–35

    Article  CAS  Google Scholar 

  20. Jana A, Das PP, Agarkar SA, Sujatha Devi P (2014) A comparative study on the dye sensitized solar cell performance of solution processed ZnO. Sol Energy 102:143–151

    Article  CAS  Google Scholar 

  21. Abbasi S, Zebarjad SM, Baghban SHN (2013) Decorating and filling of multi-walled carbon naotubes with TiO2 nanoparticles via wet chemical method 5. Scientific Research. doi:10.4236/eng.2013.52030

  22. Bucak S, Rende D (2014) Colloid and surface chemistry: a laboratory guide for exploration of the NanoWorld. CRC Press, New York

    Google Scholar 

  23. Yuan Z, Zhu X, Wang X, Cai X, Zhang B, Qiu D, Wu H (2011) Annealing effects of In2O3 thin films on electrical properties and application in thin film transistors. Thin Solid Films 519:3254–3258

    Article  CAS  Google Scholar 

  24. Abdullah H, Omar A, Razali MZ, Yarmo MA (2014) Photovoltaic properties of ZnO photoanode incorporating with CNTs for dye-sensitized solar cell application. Ionics 20:1023–1030

    Article  CAS  Google Scholar 

  25. Wang W, Serp P, Kalck P, Faria JL (2005) Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J Mol Catal A Chem 235:194–199

    Article  CAS  Google Scholar 

  26. Jitianu A, Cacciaguerra T, Benoit R, Delpeux S, Beguin F, Bonnamy S (2004) Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites. Carbon 42:1147–1151

    Article  CAS  Google Scholar 

  27. Yu Y, Jimmy CY, Yu J-G, Kwok Y-K, Che Y-K, Zhao J-C, Ding L, Ge W-K, Wong P-K (2005) Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl Catal A Gen 289:186–196

    Article  CAS  Google Scholar 

  28. Sreekala CS, Indiramma J, Kumar KB, Sreelatha KS, Roy MS (2013) Functionalized multi-walled carbon nanotubes for enhanced photocurrent in dye-sensitized solar cells. J Nanostruct Chem 3:1–8

    Article  Google Scholar 

  29. Eguchi K, Koga H, Sekizawa K, Sasaki K (2000) Nb2O5-based composite electrodes for dye-sensitized solar cells. J Ceram Soc Jpn 108:1067–1071

    Article  CAS  Google Scholar 

  30. Bhushan B, Israelachvili JN, Landman U (1995) Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374:607–616

    Article  CAS  Google Scholar 

  31. McKendry R, Theoclitou M-E, Rayment T, Abell C (1998) Chiral discrimination by chemical force microscopy. Nature 391:566–568

    Article  CAS  Google Scholar 

  32. Ariyanto NP, Abdullah H, Ghani NSA (2009) Surface morphology characterisation of Sn-doped ZnO films for antireflective coating. Mater Res Innov 13:157–160

    Article  CAS  Google Scholar 

  33. Uk Lee S, Seok Choi W, Hong B (2010) A comparative study of dye-sensitized solar cells added carbon nanotubes to electrolyte and counter electrodes. Sol Energy Mater Sol Cells 94:680–685

    Article  Google Scholar 

  34. Munkhbayar B, Hwang S, Kim J, Bae K, Ji M, Chung H, Jeong H (2012) Photovoltaic performance of dye-sensitized solar cells with various MWCNT counter electrode structures produced by different coating methods. Electrochim Acta 80:100–107

    Article  CAS  Google Scholar 

  35. Reddy RS, Sreedhar A, Reddy S, Uthanna S (2012) Effect of film thickness on the structural morphological and optical properties of nanocrystalline ZnO films formed by RF magnetron sputtering. Adv Mater Lett 3:239–245

    Article  CAS  Google Scholar 

  36. Xue G, Guo Y, Yu T, Guan J, Yu X, Zhang J, Liu J, Zou Z (2012) Degradation mechanisms investigation for long-term thermal stability of dye-sensitized solar cells. Int J Electrochem Sci 7:1496–1511

    CAS  Google Scholar 

  37. Wen P, Han Y,Zhao W (2012) Influence of TiO2 nanocrystals fabricating dye-sensitized solar cell on the absorping spectra of N719 sensitizer. Int J Photoenergy. doi:10.1155/2012/906198

  38. Liberatore M, Decker F, Burtone L, Zardetto V, Brown TM, Reale A, Di Carlo A (2009) Using EIS for diagnosis of dye-sensitized solar cells performance. J Appl Electrochem 39:2291–2295

    Article  CAS  Google Scholar 

  39. Wang J, Yanhe H, Feng M, Chen J, Li X, Zhang S (2011) Preparation and photoelectrochemical characterization of WO3/TiO2 nanotube array electrode. J Mater Sci 46:416–421

    Article  CAS  Google Scholar 

  40. Zhang Y, Li X, Feng M, Zhou F, Chen J (2010) Photoelectrochemical performance of TiO2-nanotube-array film modified by decoration of TiO2 via liquid phase deposition. Surf Coat Technol 205:2572–2577

    Article  CAS  Google Scholar 

  41. Yu J, Fan J, Cheng B (2011) Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films. J Power Sources 196:7891–7898

    Article  CAS  Google Scholar 

  42. Chan Y-F, Wang C-C, Chen B-H, Chen C-Y (2011) Incorporation of plasma-functionalized carbon nanocapsules into a nanocrystalline TiO2 photoanode for use in dye-sensitized solar cells. Carbon 49:4898–4910

    Article  CAS  Google Scholar 

  43. Omar A, Abdullah H, Yarmo MA, Shaari S, Taha MR (2013) Morphological and electron transport studies in ZnO dye-sensitized solar cells incorporating multi-and single-walled carbon nanotubes. J Phys D Appl Phys 46:165503

    Article  Google Scholar 

  44. Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333

    Article  CAS  Google Scholar 

  45. Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S (2006) Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B 110:13872–13880

    Article  CAS  Google Scholar 

  46. Omar A, Abdullah H (2014) Electron transport analysis in zinc oxide-based dye-sensitized solar cells: a review. Renew Sust Energ Rev 31:149–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Exploratory Research Grants Scheme (ERGS/1/2013/TK07/UKM/03/2) and Photonic Technology Laboratory, Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, H., Mahalingam, S. & Ashaari, I. Morphological, photovoltaic, and electron transport properties of In2O3-based DSSC with different concentrations of MWCNTs. Ionics 22, 2499–2510 (2016). https://doi.org/10.1007/s11581-016-1776-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1776-0

Keywords

Navigation