Skip to main content
Log in

Enhancement of dye-sensitized solar cell efficiency using carbon nanotube/TiO2 nanocomposite thin films fabricated at various annealing temperatures

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

To increase energy conversion efficiency of dye-sensitized solar cells (DSSCs), carbon nanotubes (CNTs) were added to TiO2 gel-like solution. Modified acid-catalyzed sol-gel method was used with the doctor blade coating technique to obtain thin films of CNT/TiO2 nanocomposite photoanode. CNT/TiO2 paste was applied onto the conductive glass to generate a 0.25 cm2 active area which was later annealed at 350°C, 450°C, and 550°C for 60 min. Characterization of the CNT/TiO2 paste was performed using x-ray diffraction. Results showed that the crystalline phase of the particles was anatase. The micrograph obtained using field emission scanning electron microscopy demonstrated that the pastes are highly porous. Brunauer-Emmett-Teller analysis was performed to determine the CNT/TiO2 surface area and particle size. The DSSC with the CNT/TiO2 photoanodes annealed at 550°C showed the highest incident photon-to-charge carrier efficiency value of 0.95% compared with the DSSCs with photoanodes annealed at 350°C and 450°C (0.70% and 0.83%, respectively). The observed efficiencies of the DSSCs with CNT/TiO2 photoanode annealed at the three different temperatures were 2.62%, 2.65%, and 3.13%. The electrochemical impedance spectroscopy analysis showed that the DSSCs with photoanodes developed using the highest annealing temperature (550°C) have higher electron lifetime of 70.423 ms and lower effective recombination rate of 1.42 × 10−2 s−1, thereby improving the performance of CNT/TiO2 DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Nature 23, 37 (1972).

    Article  Google Scholar 

  2. A. Housa, H. Lachheb, M. Ksibi, E. Elaloui, and J. M. Herrmann, Appl. Catal. B. 31, 145 (2001).

    Article  Google Scholar 

  3. B. O’Regan, J. Moser, M. Anderson, and M. Grätzel, J. Phys. Chem. 94, 8720 (1990).

    Article  Google Scholar 

  4. I. Seigo, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Gratzel, Adv. Mater. 18, 1202 (2006).

    Article  Google Scholar 

  5. M. Dürr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles, Naturematerials 4, 607 (2005).

    Article  Google Scholar 

  6. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  7. Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, and H. Imai, J. Phys. Chem. B 110, 25210 (2006).

    Article  Google Scholar 

  8. N. Kopidakis, K. D. Benkstein, J. V. D. Lagemaat, and A. J. Frank, J. Phys. Chem. B 107, 11307 (2003).

    Article  Google Scholar 

  9. K. Y. Cheung, C. T. Yip, A. B. Djurišić, Y. H. Leung, and W. K. Chan, Adv. Funct. Mater. 17, 555 (2007).

    Article  Google Scholar 

  10. M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Grimes, J. Phys. Chem. B 110, 16179 (2006).

    Article  Google Scholar 

  11. K. Shankar, G. K. Mor, H. E. Prakasam, A. Yoriya, M. Paulose, O. K. Varghese, and C. A. Grimes, Nanotechnology 18, 065707 (2007).

    Article  Google Scholar 

  12. M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin, and C. A. Grimes, Nanotechnology 17, 1446 (2006).

    Article  Google Scholar 

  13. H. Wang, C. T. Yip, K. Y Cheung, A. B. Djurišić, M. H. Xie, Y. H. Leung, and W. K. Chan, Appl. Phys. Lett. 89, 023508 (2006).

    Article  Google Scholar 

  14. K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, Nano-Lett. 7, 96 (2007).

    Google Scholar 

  15. C. J. Lin, W. Y. Yu, and S. H. Chien, Appl. Phys. Lett. 91, 233120 (2007).

    Article  Google Scholar 

  16. C. H. Ku and J. J. Wu, Appl. Phys. Lett. 91, 093117 (2007).

    Article  Google Scholar 

  17. J. Jinting, I. Seiji, A. Motonari, and W. Hao, J. Mater. Sci.: Mater. Electron. 18, 593 (2007).

    Google Scholar 

  18. M. Hoèevar, M. Berginc, and U. O. Krašovec, Topic M. J. Sol-Gel Sci. Technol. 48, 156 (2008).

    Article  Google Scholar 

  19. W. Wang, P. Serp, P. Kalck, and J. L. Faria, J. Mol. Catal. A 235, 194 (2005).

    Article  Google Scholar 

  20. A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, and F. Béguin, Carbon 42, 1147 (2004).

    Article  Google Scholar 

  21. Y. Yu, J. C. Yu, J. G. Yu, Y. C. Kwok, Y. K. Che, J. C. Zhao, L. Ding, W. K. Ge, and P. K. Wong, Appl. Catal. A 289, 186 (2005).

    Article  Google Scholar 

  22. Y. Wan-Jian, C. Shiyou, Y. Ji-Hui, G. Xin-Gao, Y. Yanfa, and W. Su-Huai, Appl. Phys. Lett. 96, 221901 (2010).

    Article  Google Scholar 

  23. P. A. Nugroho and H. Abdullah, Funct. Mater. Lett. 3, 303 (2010).

    Article  Google Scholar 

  24. L. Zhao-Hui, S. C. Eou, and J. K. Sang, Current Appl. Phys. 11, 28 (2011).

    Article  Google Scholar 

  25. Y. Jiaguo, F. Jiajie, and C. Bei, J. Power Sources 196, 7891 (2011).

    Article  Google Scholar 

  26. Y. Ming-Yu, H. Min-Chien, L. Shu-Hang, L. Po-I, T. Han-Min, M. M. Chen-Chi, P. Nen-Wen, and G. Ming-Der, Carbon 49, 3597 (2011).

    Article  Google Scholar 

  27. S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, Sol Energ Mater Sol Cell 90, 1176 (2006).

    Article  Google Scholar 

  28. I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, R. Gomez, Q. Shen, T. Toyoda, and J. Bisquert, Acc. Chem. Res. 42, 1848 (2009).

    Article  Google Scholar 

  29. H. Abdullah, M. Z. Razali, and A. Yarmo, Adv. Mater. Res. 139–141, 153 (2010).

    Article  Google Scholar 

  30. M. Ambily, R. G. Mohan, and N. Munichandraiah, Mater. Chem. Phys. 127, 95 (2011).

    Article  Google Scholar 

  31. Q. Wang, J. E. Moser, and M. Grätzel, J. Phys. Chem. B 109, 14945 (2005).

    Article  Google Scholar 

  32. F. F. Santiago, J. G. Canadas, J. N. Clifford, and J. Bisquert, J. Appl. Phys. 96, 6903 (2004).

    Article  Google Scholar 

  33. U. L. Sung, S. C. Won, and H. Byungyou, Solar Energy Mater. Solar Cells 94, 680 (2010).

    Article  Google Scholar 

  34. L. Kun-Mu, H. Chih-Wei, C. Hsin-Wei, and H. Kuo-Chuan, Solar Energy Mater. Solar Cells 92, 1628 (2008).

    Article  Google Scholar 

  35. Z. Yanwei, Z. Jing, W. Peiqing, Y. Guangtao, S. Qiang, Z. Jun, and Z. Yuejin, Mater. Chem. Phys. 123, 595 (2010).

    Article  Google Scholar 

  36. A. Mathew, G. M. Rao, and N. Munichandraiah, Mater. Chem. Phys. 127, 95 (2011).

    Article  Google Scholar 

  37. M. Liberatore, F. Decker, L. Burtone, V. Zardetto, T. M. Brown, A. Reale, and A. D. Carlo, J. Appl. Electrochem. 39, 2291 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huda Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, H., Razali, M.Z., Shaari, S. et al. Enhancement of dye-sensitized solar cell efficiency using carbon nanotube/TiO2 nanocomposite thin films fabricated at various annealing temperatures. Electron. Mater. Lett. 10, 611–619 (2014). https://doi.org/10.1007/s13391-013-3132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3132-0

Keywords

Navigation