Skip to main content
Log in

Synthesis and characterization of Co-doped lithium manganese oxide as a cathode material for rechargeable Li-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An attempt has been made to prepare cobalt-doped lithium manganese oxide with three different concentrations by simple molten salt method to enhance the electrical property of Li4Mn5O12. Prepared samples were examined by XRD and SEM to identify its structure and morphology. Electrical properties were identified by impedance and conductivity analysis, and it was found that the material exhibits negative temperature coefficient (NTCR) property, i.e., semi-conducting nature. Among the various concentrations, 0.5 mol of Co-doped lithium manganese oxide has shown good conductivity of 3.1 × 10−5 S cm−1 at 433 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2005) Electrode materials for lithium secondary batteries prepared by sol–gel methods. Prog Mater Sci 50:881–928

    Article  CAS  Google Scholar 

  2. Tarascon JM, Wang E, Shokoohi FK (1991) The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. J Electrochem Soc 138:2859–5864

    Article  CAS  Google Scholar 

  3. Kilroy WP, Ferrando WA, Dallek S (2001) Synthesis and characterization of Li2Mn4O9 cathode material. J Power Sources 97-98:336–343

    Article  CAS  Google Scholar 

  4. Zhao Y, Xu X, Lai Q, Hao Y, Wang L, Lin Z (2010) Water-in-oil microemulsion method preparation and capacitance performance study of Li4Mn5O12. J Solid State Electrochem 14:1509–1513

    Article  CAS  Google Scholar 

  5. Choi W, Manthiram A (2007) Influence of fluorine substitution on the electrochemical performance of 3 V spinel Li4Mn5O12 − ηFη cathodes. Solid State Ionics 178:1541–1545

    Article  CAS  Google Scholar 

  6. Kim J, Manthiram A (1998) low temperature synthesis and electrode properties of Li4Mn5O12. J Electrochem Soc 145:L-53–LL55

    Article  CAS  Google Scholar 

  7. Bai Y-J, Gong C, Qi Y-X, Luna N, Feng J (2012) Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates. J Mater Chem 22:19054–19060

    Article  CAS  Google Scholar 

  8. Bai Y-J, Gong C, Lun N, Qi Y-X (2013) Yttrium-modified Li4Ti5O12 as an effective anode material for lithium ion batteries with outstanding long-term cyclability and rate capabilities. J Mater Chem A 1:89–96

    Article  CAS  Google Scholar 

  9. Nithya VD, Kalai Selvan R, Kumaran V, Sharmila S, Lee CW (2012) Molten salt synthesis and characterization of Li4Ti5−xMnxO12 (x = 0.0, 0.05 and 0.1) as anodes for Li-ion batteries. Appl Surf Sci 261:515–519

    Article  CAS  Google Scholar 

  10. Sharmila S, Senthilkumar B, Nithya VD, Vediappan K, Lee CW, Kalai Selvan R (2013) Electrical and electrochemical properties of molten salt-synthesized Li4Ti5−xSnxO12 (x = 0.0, 0.05 and 0.1) as anodes for Li-ion batteries. J Phys Chem Solids 74:1515–1521

    Article  CAS  Google Scholar 

  11. Nithya VD, Sharmila S, Vediappan K, Lee CW, Leonid V, Kalai Selvan R (2014) Electrical and electrochemical properties of molten-salt synthesized 0.05 mol Zr- and Si-doped Li4Ti5O12 microcrystals. J Appl Electrochem 44:647–6547

    Article  CAS  Google Scholar 

  12. Zhao Y, Lai Q, Zeng H, Hao Y, Lin Z (2013) Li4Mn5O12 prepared using L-lysine as additive and its electrochemical performance. Ionics 19:1483–1487

    Article  CAS  Google Scholar 

  13. Shin Y, Manthiram A (2003) Origin of the high voltage (>4.5 V) capacity of spinel lithium manganese oxides. Electrochim Acta 48:3583–3592

    Article  CAS  Google Scholar 

  14. Zhang YC, Wang H, Xu HY, Wang B, Yan H, Ahniyaz A, Yoshimura M (2003) Low-temperature hydrothermal synthesis of spinel-type lithium manganese oxide nanocrystallites. Solid State Ionics 158:113–117

    Article  CAS  Google Scholar 

  15. Robertson AD, Armstrong AR, Bruce PG (2001) Low temperature lithium manganese cobalt oxide spinels, Li4-xMn5-2xCo3xO12 (0≤x≤1), for use as cathode materials in rechargeable lithium batteries. J Power Source 97-98:332–335

    Article  CAS  Google Scholar 

  16. Jiang YP, Xie J, Cao GS, Zhao XB (2010) Electrochemical performance of Li4Mn5O12 nano-crystallites prepared by spray-drying-assisted solid state reactions. Electrochim Acta 56:412–417

    Article  CAS  Google Scholar 

  17. Yang T, Chen D, Jiao X, Duan Y (2007) Facile preparation and electrochemical properties of cubic-phase Li4Mn5O12 nanowires. Chem Commun 20:2072–2074

  18. Karthikeyan K, Amaresh S, Kalpana D, KalaiSelvan R, Lee YS (2012) Electrochemical supercapacitor studies of hierarchical structured Co2+-substituted SnO2 nanoparticles by a hydrothermal method. J Phys Chem Solids 73:363–367

    Article  CAS  Google Scholar 

  19. Archana S, Choudhary RNP, Thakur AK, Pradhan DK (2010) Structural, microstructural and electrical studies of La and Cu doped BaTiO3 ceramics. Physica B 405:99–106

    Article  Google Scholar 

  20. Savitha T, Selvasekarapandian S, Ramya CS, Bhuvaneswari MS, Hirankumar G, Baskaran R, Angelo PC (2006) Structural and ionic transport properties of Li2AlZr[PO4]3. J Power Sources 157:533–536

    Article  CAS  Google Scholar 

  21. Nithya VD, KalaiSelvan R (2011) Synthesis, electrical and dielectric properties of FeVO4 nanoparticles. Physica B 406:24–29

    Article  CAS  Google Scholar 

  22. Sutar BC, Pati B, Parida BN, Das PR, Choudhary RNP (2013) Dielectric and impedance characteristics of Ba(Bi0.5Nb0.5)O3 ceramics. J Mater Sci Mater Electron 24:2043–2051

    Article  CAS  Google Scholar 

  23. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  24. Molenda J, Ziemnicki M, Molenda M, Bućko M, Marzec J (2006) Transport and electrochemical properties of orthorhombic LiMnO2 cathode material for Li-ion batteries. Mater Sci Poland 24:75–83

    CAS  Google Scholar 

  25. Augustin CO, Kalai Selvan R, Nagaraj R, John Berchmans L (2005) Effect of La3+ substitution on the structural, electrical and electrochemical properties of strontium ferrite by citrate combustion method. Mater Chem Phys 89:406–411

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Sharmila or B. Janarthanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharmila, S., Janarthanan, B. & Chandrasekaran, J. Synthesis and characterization of Co-doped lithium manganese oxide as a cathode material for rechargeable Li-ion battery. Ionics 22, 1567–1574 (2016). https://doi.org/10.1007/s11581-016-1686-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1686-1

Keywords

Navigation