Skip to main content
Log in

Dielectric and impedance characteristics of Ba(Bi0.5Nb0.5)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A lead free polycrystalline material Ba(Bi0.5Nb0.5)O3 was prepared using a high-temperature mixed oxide technique using high purity ingredients. The formation of the material in monoclinic crystal structure was confirmed by an X-ray structural analysis at room temperature. The nature and texture of microstructure by scanning electron microscopy show that the compound has well defined grains uniformly distributed throughout the surface of the sample. Detailed studies of dielectric and impedance properties of the material, carried out in the frequency range of (1 kHz–1 MHz) at different temperatures (30 °C to 475 °C), have shown many interesting properties. Dielectric study showed an existence of diffuse phase transition around 317 °C. The temperature dependence of impedance parameters (impedance, modulus etc.) of the material exhibits a strong correlation of its micro-structure (i.e., bulk, grain boundary, etc.) with the electrical parameters. An existence of negative temperature coefficient of resistance (NTCR) type behavior in the material similar to that of semiconductors was also observed. The complex electric modulus analysis indicates the existence of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation. The nature of variation of dc conductivity with temperature confirms the Arrhenius behavior of the material. The ac conductivity spectra show a typical signature of an ionic conducting system, and are found to obey Jonscher’s universal power law. The temperature dependent pre-exponential factor (A) shows peak and frequency exponent (n) possesses a minimum at transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G.H.J. Haertling, Am. Ceram. Soc. 82, 797–818 (1999)

    Article  CAS  Google Scholar 

  2. M.E. Lines, A.M. Glass, Principle and application of ferroelectrics and related materials (Clarndon Press, Oxford, 1977)

    Google Scholar 

  3. R. Selvamani, G. Singh, V. Sathe, V.S. Tiwari, P.K. Gupta, J. Phys.: Condens. Matter 23, 055901 (2011)

    Article  Google Scholar 

  4. A.I. Kingon, S.K. Streffer, C. Casceri, S.R. Summerfelt, Mater. Res. Soc. Bull. 21, 46 (1996)

    CAS  Google Scholar 

  5. V.V. Shvartsman, J. Dec, T. Lukasiewicz, A.L. Khalkin, W.K. Leemann, Ferroelectrics 373, 77 (2008)

    Article  CAS  Google Scholar 

  6. G.A. Smolenskii, A.L. Agranovskaya, S.N. Popov, V.A. Isupov, Sov. Phys. Tech. Phys. 3, 1981 (1958)

    CAS  Google Scholar 

  7. N. Yasuda, Y. Ueda, J. Phys.: Condens. Matter 1, 497 (1989)

    Article  CAS  Google Scholar 

  8. C.N.W. Darlington, J. Phys.: Condens. Matter 3, 4173 (1991)

    Article  CAS  Google Scholar 

  9. N. Lampis, P. Sciau, A.G. Lehmann, J. Phys.: Condens. Matter 11, 3489 (1999)

    Article  CAS  Google Scholar 

  10. S.A. Lvanov, R. Tellgren, H. Rundlof, N.W. Thomas, S. Ananta, J. Phys.: Condens. Matter 12, 2393 (2000)

    Article  Google Scholar 

  11. V. Bonny, M. Bonin, P. Sciau, K.J. Schenk, G. Chapuis, Solid State Commun. 102, 347 (1997)

    Article  CAS  Google Scholar 

  12. A. Mishra, S.N. Choudhary, K. Prasad, R.N.P. Choudhary, Phys. B 406, 3279 (2011)

    Article  CAS  Google Scholar 

  13. K. Prasad, S. Bhagat, K. Amarnath, S.N. Choudhary, K.L. Yadav, Materials Science-Poland 28, 01 (2010)

    Google Scholar 

  14. E. Wu, POWD, an interactive powder diffraction data interpretation and indexing program, Ver. 2.1, School of Physical Sciences, Flinders University South Bedford Park, SA 5042 Australia

  15. J.C. Anderson, Dielectrics (Chapman & Hall, London, 1964)

    Google Scholar 

  16. D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci.: Mater. Electron. 23, 779 (2012)

    Article  CAS  Google Scholar 

  17. B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, J. Phys. D Appl. Phys. 44, 355402 (2011)

    Article  Google Scholar 

  18. P. Parhi, V. Manivanan, S. Kohli, P. McCurdy, Bull. Mater. Sci. 31, 885 (2008)

    Article  CAS  Google Scholar 

  19. J.R. Macdonald, Impedance spectroscopy emphasizing solid materials and systems (Wiley, New York, 1987)

    Google Scholar 

  20. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)

    Article  CAS  Google Scholar 

  21. S. Brahma, R.N.P. Choudhary, A.K. Thakur, Phys. B 355, 188 (2005)

    Article  CAS  Google Scholar 

  22. J. Suchanicz, Mater. Sci. Eng., B 55, 114 (1998)

    Article  Google Scholar 

  23. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)

    Article  CAS  Google Scholar 

  24. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Stat. Sol. (a) 201, 588 (2004)

    Article  CAS  Google Scholar 

  25. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972)

    Article  CAS  Google Scholar 

  26. H. Jain, C.H. Hsieh, J. Non-Cryst, Solids 172–174, 1408 (1994)

    Google Scholar 

  27. P.R. Das, B. Pati, B.C. Sutar, R.N.P. Choudhary, Adv. Mater. Lett. 3, 8 (2012)

    Article  CAS  Google Scholar 

  28. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)

    Article  Google Scholar 

  29. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  30. S. Sen, R.N.P. Choudhary, P. Pramanik, Phys. B 387, 56 (2007)

    Article  CAS  Google Scholar 

  31. R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. (2012). doi:10.1007/s10854-012-0647

    Google Scholar 

  32. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 58, 429 (1975)

    Article  CAS  Google Scholar 

  33. R. Macdonald, Solid State Ionics 13, 147 (1984)

    Article  CAS  Google Scholar 

  34. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  CAS  Google Scholar 

  35. M.A.L. Nobre, S. Lanfredi, J. Appl. Phy. 93, 5557 (2003)

    Article  CAS  Google Scholar 

  36. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, J. Alloys Comp. 540, 267 (2012)

    Article  CAS  Google Scholar 

  37. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007)

    Article  CAS  Google Scholar 

  38. Z. Lu, J.P. Bonnet, J. Ravez, P. Hagenmuller, Solid State Ionics 57, 235 (1992)

    Article  CAS  Google Scholar 

  39. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. P. Choudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutar, B.C., Pati, B., Parida, B.N. et al. Dielectric and impedance characteristics of Ba(Bi0.5Nb0.5)O3 ceramics. J Mater Sci: Mater Electron 24, 2043–2051 (2013). https://doi.org/10.1007/s10854-012-1054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-1054-5

Keywords

Navigation