Skip to main content
Log in

Electrical and electrochemical properties of molten-salt-synthesized 0.05 mol Zr- and Si-doped Li4Ti5O12 microcrystals

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This work emphasizes the structural, morphological, electrical, and electrochemical properties of 0.05 mol Zr- and Si-doped Li4Ti5O12 synthesized using the molten salt method and applied to negative electrodes in Li-ion batteries. Formation of the spinel phase with face-centered cubic structure in the nominally pure and Zr- and Si-doped samples are revealed from X-ray powder diffraction technique. Lattice parameters refined by full-profile Rietveld method are in accordance with the literature data for the Li4Ti5O12 (Li1.333Ti1.667O4) spinel structure. The presence of possible functional groups is identified using Fourier transform infra red spectroscopy. The field emission scanning electron microscopic images indicate the formation of micron-sized (1.5–2 μm) randomly distributed polyhedral-shaped particles. The electrical conductivity studies demonstrate the grain-conducting behavior of the material. The maximum DC conductivity of 2 × 10−5 S cm−1 is observed for Zr-doped Li4Ti5O12 at room temperature. The galvanostatic charge–discharge studies show that Zr-doped Li4Ti5O12 exhibits a high discharge capacity of about 325 mAh g−1 at 0.01 °C, higher than Si-doped Li4Ti5O12 (200 mAh g−1), and also that the cycling stability of Zr-doped Li4Ti5O12 is enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hanno R, Kawamda (1992) J Electrochem Soc 139:3397

    Article  Google Scholar 

  2. Kang YM, Lee SM, Kim SJ, Jeong GJ, Sung MS, Choi WU, Kim SS (2007) Electrochem Commun 9:959

    Article  CAS  Google Scholar 

  3. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395

    Article  CAS  Google Scholar 

  4. Yoon S, Park C-M, Sohn HJ (2008) Electrochem Solid State Lett 11:A42

    Article  CAS  Google Scholar 

  5. Wang X, Li X, Sun X, Li F, Liu Q, Wang Q, He D (2011) J Mater Chem 21:3571

    Article  CAS  Google Scholar 

  6. Courtel FM, Duncan H, Lebdeh YA, Davidson IJ (2011) J Mater Chem 21:10206

    Article  CAS  Google Scholar 

  7. Chen JS, Archer LA, Lou XWD (2011) J Mater Chem 21:9912

    Article  CAS  Google Scholar 

  8. Ji S, Zhang J, Wang W, Tang Z (2010) Mater Chem Phys 123:510

    Article  CAS  Google Scholar 

  9. Bai Y, Wang F, Wu F, Wu C, Bao L (2008) Electrochim Acta 54:322

    Article  CAS  Google Scholar 

  10. Ying Y, Hao WY, Lai QY, Lu JZ, Chen YD, Ji XY (2008) Ionics 14:85

    Article  CAS  Google Scholar 

  11. Zhang H, Jin D (2012) Appl Mech Mater 164:293

    Article  CAS  Google Scholar 

  12. Venkateswarlu M, Chen CH, Lin CW, Choud TC, Hwang BJ (2005) J Power Sources 146:204

    Article  CAS  Google Scholar 

  13. Cai R, Yu X, Liu XQ, Shao Z (2010) J Power Sources 195:8244

    Article  CAS  Google Scholar 

  14. Li Y, Zhao H, Tian Z, Qiu W, Li X (2008) J Alloys Compd 455:471

    Article  CAS  Google Scholar 

  15. Tang Y, Yang L, Fang S, Qiu Z (2009) Electrochim Acta 54:6244

    Article  CAS  Google Scholar 

  16. Li J, Jin YL, Zhang XG, Yang H (2007) Solid State Ion 178:1590

    Article  CAS  Google Scholar 

  17. Deng J, Lu Z, Belharouak I, Amine K, Chung CY (2009) J Power Sources 193:816

    Article  CAS  Google Scholar 

  18. Yi TF, Shu J, Zhu YR, Zhu XD, Ye CB, Zhou AN, Zhu RS (2009) Electrochem Acta 54:7464

    Article  CAS  Google Scholar 

  19. Zhao H, Li Y, Zhu Z, Lin J, Tian Z, Wang R (2008) Electrochem Acta 53:7079

    Article  CAS  Google Scholar 

  20. Tian B, Xiang H, Zhang L, Li Z, Wang H (2010) Electrochem Acta 55:5453

    Article  CAS  Google Scholar 

  21. Qi Y, Huang Y, Ji D, Bao S, Guo ZP (2009) Electrochem Acta 54:4772

    Article  CAS  Google Scholar 

  22. Shenouda AY, Murali KR (2008) J Power Sources 176:332

    Article  CAS  Google Scholar 

  23. Huang S, Wen Z, Zhang J, Gu Z, Xu X (2006) Solid State Ion 177:851

    Article  CAS  Google Scholar 

  24. Hao YJ, Lai QY, Lu JZ, Ji XY (2007) Ionics 13:369

    Article  CAS  Google Scholar 

  25. Jayaprakash N, Moganty SS, Lou XW, Archer LA (2011) Appl Nanosci 1:7

    Article  CAS  Google Scholar 

  26. Nugroho A, Chang W, Kim SJ, Chung KY, Kim J (2012) RSC Adv 2:10805

    Article  CAS  Google Scholar 

  27. Ge H, Li N, Li D, Dai C, Wang D (2009) J Phys Chem C 113:6324

    Article  CAS  Google Scholar 

  28. Yi TF, Xie Y, Jiang LJ, Shu J, Yue CB, Zhou AN, Ye MF (2012) RSC Adv 2:354

    Google Scholar 

  29. Jhan YR, Duh JG (2012) Electrochem Acta 63:9

    Article  CAS  Google Scholar 

  30. Yi TF, Xie Y, Wu Q, Liu H, Jiang L, Ye M, Zhu R (2012) J Power Sources 214:220

    Article  CAS  Google Scholar 

  31. Nithya VD, Kalai Selvan R, Kumaran V, Sharmila S, Lee CW (2012) Appl Surf Sci 261:515

    Article  CAS  Google Scholar 

  32. Scharner S, Weppner W, Beurmann PS (1999) J Electrochem Soc 146:857

    Article  CAS  Google Scholar 

  33. Akselrud LG, Zavalij PY, Grin Y, Pecharsky VK, Baumgartner B, Wölfel E (1993) Mater. Sci. Forum 133–136:335

    Article  Google Scholar 

  34. Deschanvres A, Raveau B, Sekkal Z (1971) Mater Res Bull 6:699

    Article  CAS  Google Scholar 

  35. Dorrian JF, Newnham RE (1969) Mater Res Bull 4:179

    Article  CAS  Google Scholar 

  36. Milanovic M, Stijepovic I, Nikolic LM (2010) Process Appl Ceram 4:69

    Article  CAS  Google Scholar 

  37. Karakassides MA, Gournis D, Petridies D (1999) Clay Miner 34:429

    Article  CAS  Google Scholar 

  38. Kalai Selvan R, Kalaiselvi N, Augustin CO, Doh CH (2006) Electrochem Solid State Lett 9:A390

    Article  CAS  Google Scholar 

  39. Jonscher AK (1977) Nature 267:673

    Article  CAS  Google Scholar 

  40. Li X, Qu M, Yu Z (2009) J Alloys Compd 487:L12

    Article  CAS  Google Scholar 

  41. Kumar A, Singh BP, Choudhary RNP, Thakur AK (2005) J Alloys Compd 394:292

    Article  CAS  Google Scholar 

  42. Lee SC, Lee SM, Lee JW, Lee JB, Lee SM, Han SS, Lee HC, Kim HJ (2009) J Phys Chem C 113:18420

    Article  CAS  Google Scholar 

  43. Tian B, Xiang H, Zhang L, Wang H (2012) J Solid State Electrochem 16:205

    Article  CAS  Google Scholar 

  44. Zhong Z, Ouyang C, Shi S, Lei M (2008) Chem Phys Chem 9:2104

    Article  CAS  Google Scholar 

  45. Yao XL, Xie S, Nian HQ, Chen CH (2008) J Alloys Compd 465:375

    Article  CAS  Google Scholar 

  46. Yi TF, Xie Y, Zhu YR, Zhu RS, Shen H (2013) J Power Sources 222:448

    Article  CAS  Google Scholar 

  47. Gu F, Chen G, Wang Z (2011) J Solid State Electrochem 16:375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant (C12120710) from Gyeonggi Technology Development Program funded by Gyeonggi Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Woo Lee or R. Kalai Selvan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nithya, V.D., Sharmila, S., Vediappan, K. et al. Electrical and electrochemical properties of molten-salt-synthesized 0.05 mol Zr- and Si-doped Li4Ti5O12 microcrystals. J Appl Electrochem 44, 647–654 (2014). https://doi.org/10.1007/s10800-014-0671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0671-5

Keywords

Navigation