Skip to main content
Log in

A facile electrochemical synthesis of three-dimensional porous Sn-Cu alloy/carbon nanotube nanocomposite as anode of high-power lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

3D (three-dimensional) porous Sn-Cu alloy/carbon nanotube (CNT) nanocomposite is successfully produced by electrodeposition using a 3D porous Cu prepared by electroless plating as the substrate. Scanning electron microscope (SEM) results demonstrate that there are a large amount of interconnected pores with the diameter of about 3 μm in the nanocomposite, and the pore walls are composed of Sn-Cu alloy nanoparticles uniformly encapsulated on CNT networks. Owing to the 3D porous structure that can accommodate the volumetric variation and alleviate the stress caused from the large volumetric changes during charging/discharging, CNT networks can enhance the electrode strength and prevent active materials from exfoliation during charging/discharging through steel-reinforced concrete mechanism; this nanocomposite delivers excellent cyclability and large high-rate capacity. The first specific reversible capacity at the current density of 100 mA g−1 is 546.6 mAh g−1 and remains 370.1 mA g−1 after 100 cycles. The reversible specific capacity at 1600 mA g−1 remains 35.3 % of that at 200 mA g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Li H, Wang ZX, Chen LQ, Huang XJ (2009) Adv Mater 21:4593–4607

    Article  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  4. Park CM, Kim JH, Kim H, Sohn HJ (2010) Chem Soc Rev 39:3115–3141

    Article  CAS  Google Scholar 

  5. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395–1397

    Article  CAS  Google Scholar 

  6. Winter M, Besenhard JO (1999) Electrochim Acta 45:31–50

    Article  CAS  Google Scholar 

  7. Kim MG, Cho J (2009) Adv Funct Mater 191:497–504

    Google Scholar 

  8. Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS (2008) Adv Mater 20:1160–1165

    Article  CAS  Google Scholar 

  9. Valvo M, Lafont U, Munao D, Kelder EM (2009) J Power Sources 189:297–302

    Article  CAS  Google Scholar 

  10. Balan L, Schneider R, Billaud D, Ghanbaja J (2005) Mater Lett 59:1080–1084

    Article  CAS  Google Scholar 

  11. Nwokeke UG, Alcántara R, Tirado JL, Stoyanova R, Zhecheva E (2011) J Power Sources 196:6768–6771

    Article  CAS  Google Scholar 

  12. Chen ZX, Cao YL, Qian JF, Ai XP, Yang HX (2010) J Mater Chem 20:7266–7271

    Article  CAS  Google Scholar 

  13. Vu A, Qian YQ, Stein A (2012) Adv Energy Mater 2:1056–1085

    Article  CAS  Google Scholar 

  14. Zhang HG, Yu XD, Braun PV (2011) Nat Nanotechnol 6:277–281

    Article  CAS  Google Scholar 

  15. Hassoun J, Panero S, Simon P, Taberna PL, Scrosati B (2007) Adv Mater 19:1632–1635

    Article  CAS  Google Scholar 

  16. Tian M, Wang W, Lee SH, Lee YC, Yang RG (2011) J Power Sources 196:10207–10212

    Article  CAS  Google Scholar 

  17. Nishikawa K, Dokko K, Kinoshita K, Woo SW, Kanamura K (2009) J Power Sources 189:726–729

    Article  CAS  Google Scholar 

  18. Jung HR, Kim EJ, Park YJ, Shin HC (2011) J Power Sources 196:5122–5127

    Article  CAS  Google Scholar 

  19. Chen JZ, Yang L, Fang SH, Hirano S (2012) J Power Sources 209:204–209

    Article  CAS  Google Scholar 

  20. Park CM, Jeon KJ (2011) Chem Commun 47:2122–2124

    Article  CAS  Google Scholar 

  21. Yang R, Huang J, Zhao W, Lai WZ, Zhang XZ, Zheng J, Li XG (2010) J Power Sources 195:6811–6816

    Article  CAS  Google Scholar 

  22. Shin HC, Liu ML (2005) Adv Funct Mater 15:582–586

    Article  CAS  Google Scholar 

  23. Zhang SC, Xing YL, Jiang T, Du ZJ, Li F, He L, Liu WB (2011) J Power Sources 196:6915–6919

    Article  CAS  Google Scholar 

  24. Gowda SR, Reddy ALM, Zhan XB, Jafry HR, Ajayan PM (2012) Nano Lett 12:1198–1202

    Article  CAS  Google Scholar 

  25. Chen JZ, Yang L, Fang SH, Hirano S, Tachibana K (2012) J Power Sources 199:341–345

    Article  CAS  Google Scholar 

  26. Liu J, Wen YR, Aken PAV , Maier J, and Yu Y (2014) Nano Lett. 14:6387–6392

  27. Yu Y, Gu L, Lang XY, Zhu CB, Fujita T, Chen MW, Maier J (2011) Adv Mater 23:2443–2447

    Article  CAS  Google Scholar 

  28. Chen XL, Guo JC, Gerasopoulos K, Langrock A, Brown A, Ghodssi R, Culver JN, Wang CS (2012) J Power Sources 211:129–132

    Article  CAS  Google Scholar 

  29. Fan XY, Wang JJ, Li Y, Cao GM, Shi XY, Huang L, Sun SG, Li DL (2011) Chem J Chinese U 32:934–938

    CAS  Google Scholar 

  30. Fan XY, Ke FS, Wei GZ, Huang L, Sun SG (2009) J Alloys Compd 476:70–73

    Article  CAS  Google Scholar 

  31. Xue LJ, Huang L, Ke FS, Wei GZ, Zheng XM, Li JT, Fan XY, Sun SG (2010) Chinese J Electrochem 16:161–167

    CAS  Google Scholar 

  32. Xue LJ, Xu YF, Huang L, Ke FS, He Y, Wang YX, Wei GZ, Li JT, Sun SG (2011) Electrochim Acta 56:5979–5987

    Article  CAS  Google Scholar 

  33. Li XF, Dhanabalan A, Gu L, Wang CN (2012) Adv Energy Mater 2:238–244

    Article  Google Scholar 

  34. Derrien G, Hassoun J, Panero S, Scrosati B (2007) Adv Mater 19:2336–2340

    Article  CAS  Google Scholar 

  35. Xu YH, Guo JC, Wang CS (2012) J Mater Chem 22:9562–9567

    Article  CAS  Google Scholar 

  36. Seo SD, Lee GH, Lim AH, Min KM, Kim JC, Shim HW, Park KS, Kim DW (2012) RSC Adv 2:3315–3320

    Article  CAS  Google Scholar 

  37. Wang Y, Wu MH, Jiao Z, Lee JY (2009) Chem Mater 21:3210–3215

    Article  CAS  Google Scholar 

  38. Zhai CX, Du N, Zhang H, Yu JX, Wu P, Xiao CM, Yang DR (2011) Nanoscale 3:1798–1809

    Article  CAS  Google Scholar 

  39. Lee JH, Kong BS, Yang SB, Jung HT (2009) J Power Sources 194:520–525

    Article  CAS  Google Scholar 

  40. Fan XY, Shi YX, Wang JJ, Wang J, Shi XY, Xu L, Gou L, Li DL (2013) Solid State Ionics 237:1–7

    Article  CAS  Google Scholar 

  41. Fan XY, Shi YX, Wang JJ, Wang J, Shi XY, Xu L, Gou L, Li DL (2013) Ionics 19:1551–1558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 20903016, 21073021, and 21103013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yong Fan or Dong-Lin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, XY., Shi, YX., Cui, Y. et al. A facile electrochemical synthesis of three-dimensional porous Sn-Cu alloy/carbon nanotube nanocomposite as anode of high-power lithium-ion battery. Ionics 21, 1909–1917 (2015). https://doi.org/10.1007/s11581-015-1372-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1372-8

Keywords

Navigation