Skip to main content
Log in

Electrochemical synthesis and lithium storage properties of three-dimensional porous Sn–Co alloy/CNT composite

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Three-dimensional (3-D) porous copper with stable pore structure is prepared by electroless plating. 3-D porous Sn–Co alloy/carbon nanotube (CNT) composite is synthesized by electrodeposition using 3-D porous copper as the substrate. The scanning electron microscope results indicate that 3-D porous Sn–Co alloy/CNT composite contains a large amount of interconnected pores with the diameter size of ~3 μm. Upon cycling, the pore structure gradually disappears, but no serious exfoliation appears due to porous structure and reinforcement by CNT. The charge/discharge results demonstrate that the 3-D porous Sn–Co alloy/CNT composite electrode delivers high first reversible specific capacity of 490 mAh g−1, and remains 441 mAh g−1 after 60 cycles tested at different current densities. Even at the current density of 3,200 mA g−1, the reversible specific capacity remains 319 mAh g−1, which is 65 % of the first specific capacity cycled at the current density of 100 mA g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Energy Environ Sci 4:3243

    Article  CAS  Google Scholar 

  2. Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi DW, Lemmon JP, Liu J (2011) Chem Rev 111:3577

    Article  CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Chem Mater 22:587

    Article  CAS  Google Scholar 

  4. Tarascon JM, Armand M (2001) Nature 414:359

    Article  CAS  Google Scholar 

  5. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395

    Article  CAS  Google Scholar 

  6. Winter M, Besenhard JO (1999) Electrochim Acta 45:31

    Article  CAS  Google Scholar 

  7. Park CM, Kim JH, Kim H, Sohn HJ (2010) Chem Soc Rev 39:3115

    Article  CAS  Google Scholar 

  8. Ferrara G, Damen L, Arbizzani C, Inguanta R, Piazza S, Sunseri C, Mastragostino M (2011) J Power Sources 196:1469

    Article  CAS  Google Scholar 

  9. He JC, Zhao HL, Wang J, Chen JB (2010) J Alloys Compd 508:629

    Article  CAS  Google Scholar 

  10. Wang YX, Huang L, Chang YQ, Ke FS, Li JT, Sun SG (2010) Electrochem Commun 12:1226

    Article  CAS  Google Scholar 

  11. Ferguson PP, Todd ADW, Dahn JR (2010) Electrochem Commun 12:1041

    Article  CAS  Google Scholar 

  12. Lee JH, Kong BS, Baek YK, Yang SB, Jung HT (2009) Nanotechnology 20:235203

    Article  Google Scholar 

  13. Lee JH, Kong BS, Yang SB, Jung HT (2009) J Power Sources 194:520

    Article  CAS  Google Scholar 

  14. Huang L, Cai JS, He Y, Ke FS, Sun SG (2009) Electrochem Commun 11:950

    Article  CAS  Google Scholar 

  15. Fan SF, Sun T, Rui XH, Yan QY, Hng HH (2012) J Power Sources 201:288

    Article  CAS  Google Scholar 

  16. Liang SZ, Zhu XF, Lian PC, Yang WS, Wang HH (2011) J Solid State Chem 184:1400

    Article  CAS  Google Scholar 

  17. Chen SQ, Chen P, Wu MH, Pan DY, Wang Y (2010) Electrochem Commun 12:1302

    Article  CAS  Google Scholar 

  18. Wang GX, Wang B, Wang XL, Park JS, Dou SX, Ahn H, Kim K (2009) J Mater Chem 19:8378

    Article  CAS  Google Scholar 

  19. Yu Y, Gu L, Wang CL, Dhanabalan A, Aken Priv-Doz PAV, Maier J (2009) Angew Chem Int Ed 48:6485

    Article  CAS  Google Scholar 

  20. Chen JZ, Yang L, Fang SH, Hirano S (2011) Electrochem Commun 13:848

    Article  Google Scholar 

  21. Ke FS, Huang L, Wei HB, Cai JS, Fan XY, Yang FZ, Sun SG (2007) J Power Sources 170:450

    Article  CAS  Google Scholar 

  22. Ke FS, Huang L, Jiang HH, Wei HB, Yang FZ, Sun SG (2007) Electrochem Commun 9:228

    Article  CAS  Google Scholar 

  23. Ke FS, Huang L, Cai JS, Sun SG (2007) Electrochim Acta 52:6741

    Article  CAS  Google Scholar 

  24. Fan XY, Wang JJ, Li Y, Cao GM, Shi XY, Huang L, Sun SG, Li DL (2011) Chem J Chinese U 32:934

    CAS  Google Scholar 

  25. Fan XY, Ke FS, Wei GZ, Huang L, Sun SG (2009) J Alloys Compd 476:70

    Article  CAS  Google Scholar 

  26. Qu BH, Zhang M, Lei DN, Zeng YP, Chen YJ, Chen LB, Li QH, Wang YG, Wang TH (2011) Nanoscale 3:3646

    Article  CAS  Google Scholar 

  27. Yang R, Huang J, Zhao W, Lai WZ, Zhang XZ, Zheng J, Li XG (2010) J Power Sources 195:6811

    Article  CAS  Google Scholar 

  28. Shin HC, Liu ML (2005) Adv Mater 15:582

    CAS  Google Scholar 

  29. Zhang SC, Xing YL, Jiang T, Du ZJ, Li F, He L, Liu WB (2011) J Power Sources 196:6915

    Article  CAS  Google Scholar 

  30. Du ZJ, Zhang SC, Zhao JF, Jiang T, Bai ZM (2012) Int J Electrochem Sci 7:1180

    CAS  Google Scholar 

  31. Zhang HG, Braun PV (2012) Nano Lett 12:2778

    Article  CAS  Google Scholar 

  32. Zhang YQ, Xia XH, Wang XL, Mai YJ, Shi SJ, Tang YY, Gu CG, Tu JP (2012) J Power Sources 213:106

    Article  CAS  Google Scholar 

  33. Xue LG, Fu ZH, Yao Y, Huang T, Yu AS (2010) Electrochim Acta 55:7310

    Article  CAS  Google Scholar 

  34. Tian M, Wang W, Lee SH, Lee YC, Yang RG (2011) J Power Sources 196:10207

    Article  CAS  Google Scholar 

  35. Nam DH, Kim RH, Han DW, Kwon HS (2012) Electrochim Acta 66:126

    Article  CAS  Google Scholar 

  36. Jung HR, Kim EJ, Park YJ, Shin HC (2011) J Power Sources 196:5122

    Article  CAS  Google Scholar 

  37. Xue LJ, Huang L, Ke FS, Wei GZ, Zheng XM, Li JT, Fan XY, Sun SG (2010) Chinese J Electrochem 16:161

    CAS  Google Scholar 

  38. Xue LJ, Xu YF, Huang L, Ke FS, He Y, Wang YX, Wei GZ, Li JT, Sun SG (2011) Electrochim Acta 56:5979

    Article  CAS  Google Scholar 

  39. Shin HC, Liu ML (2004) Chem Mater 16:5460

    Article  CAS  Google Scholar 

  40. Holzapfel M, Martinent A, Alloin F, Gorrec BL, Yazami R, Montella C (2003) J Electroanal Chem 546:41

    Article  CAS  Google Scholar 

  41. Markovsky B, Levi MD, Aurbach D (1998) Electrochim Acta 43:2287

    Article  CAS  Google Scholar 

  42. Illig J, Ender M, Chrobak T, Schmidt JP, Klotz D, Ivers-Tiffée E (2012) J Electrochem Soc 159:A952

    Article  CAS  Google Scholar 

  43. Levi MD, Gamolsky K, Aurbach D, Heider U, Oesten R (2000) Electrochim Acta 45:1781

    Article  CAS  Google Scholar 

  44. Zhuang QC, Wei T, Du LL, Cui YL, Fang L, Sun SG (2010) J Phys Chem C 114:8614

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (grant no. 20903016), Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (grant no. 708084), National Natural Science Foundation of China (grant no. 21073021), the Special Fund for Basic scientific Research of Central Colleges, Chang’an University (grant no. CHD2010JC006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yong Fan or Dong-Lin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, XY., Shi, YX., Wang, JJ. et al. Electrochemical synthesis and lithium storage properties of three-dimensional porous Sn–Co alloy/CNT composite. Ionics 19, 1551–1558 (2013). https://doi.org/10.1007/s11581-013-0895-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0895-0

Keywords

Navigation