Skip to main content
Log in

Synthesis of PtNFs/PANI/NG with enhanced electrocatalytic activity towards methanol oxidation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel Pt nanoflowers/polyaniline/nitrogen-doped graphene (PtNFs/PANI/NG) electrocatalyst was prepared by dispersing Pt nanoflowers (PtNFs) onto a polyaniline (PANI) grafted N-doped graphene (NG) matrix through a two-step electrochemical process. Firstly, NG was prepared by a hydrothermal reaction of graphene oxide (GO) with urea, and then electrochemical polymerization of aniline at NG was carried out. Secondly, PtNFs was dispersed onto the film of PANI/NG by electrochemical reduction of H2PtCl6. The as-prepared composites were characterized by SEM, XRD, and Raman spectra. Compared with PtNFs/PANI/G, PtNFs/PANI, and PtNFs/NG catalysts, the novel PtNFs/PANI/NG catalyst exhibits more advantages such as high catalytic activity, excellent poisoning tolerance, and stability characteristic towards methanol electro-oxidation, which is attributed to not only the good dispersion of PtNFs on PANI/NG but also the strong interactions between metal particles and conducting polymer matrixes. The results suggest that the PtNFs/PANI/NG catalyst can be a promising alternative for catalyst in direct methanol fuel cells (DMFCs).

A novel Pt nanoflowers/polyaniline/nitrogen-doped graphene (PtNFs/PANI/NG) composite was developed via electrochemical approach, in which NG cannot only exhibit excellent catalytic activity towards the oxygen reduction reaction and electric conductivity but also effectively improve the stability of PANI. The combination of NG and PANI can improve redox activity of ternary complex film and the successful deposition of Pt on the PANI/NG electrode to form a unique three-dimensional structure of PtNFs. Compared with pure Pt, the incorporation of Pt to the substrate matrices leads to a decrease in the amount of Pt used and an improvement of catalytic activity towards the oxidation of methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhao X, Yin M, Ma L, Liang L, Liu CP, Liao JH, Lu TH, Xing W (2011) Energy Environ Sci 4:2736–2753

    Article  CAS  Google Scholar 

  2. Sundarrajan S, Allakhverdiev SI, Ramakrishna S (2012) Int J Hydrogen Energy 37:8765–8786

    Article  CAS  Google Scholar 

  3. Wang YS, Yang SY, Li SM, Tien HW, Hsiao ST, Liao WH, Liu CH, Chang KH, Ma CCM, Hu CC (2013) Electrochim Acta 87:261–269

    Article  CAS  Google Scholar 

  4. Zhong CJ, Luo J, Fang B, Wanjala BN, Njoki PN, Loukrakpam R, Yin J (2010) Nanotechnology 21:062001

    Article  Google Scholar 

  5. Zhou Y, Neyerlin K, Olson TS, Pylypenko S, Bult J, Dinh HN, Gennett T, Shao ZP, O'Hayre R (2010) Energy Environ Sci 3:1437–1446

    Article  CAS  Google Scholar 

  6. Du S (2010) J Power Sources 195:289–292

    Article  CAS  Google Scholar 

  7. Koenigsmann C, Wong SS (2011) Energy Environ Sci 4:1161–1176

    Article  CAS  Google Scholar 

  8. Lv R, Cui T, Jun MS, Zhang Q, Cao AY, Su DS, Zhang ZJ, Yoon SH, Miyawaki J, Mochida I, Kang FY (2011) Adv Funct Mater 21:999–1006

    Article  CAS  Google Scholar 

  9. Xiong B, Zhou Y, O’Hayre R, Shao Z (2013) Appl Surf Sci 266:433–439

    Article  CAS  Google Scholar 

  10. Sharma S, Pollet BG (2012) J Power Sources 208:96–119

    Article  CAS  Google Scholar 

  11. Hu Y, Wu P, Yin Y, Zhang H, Cai CX (2012) Appl Catal B Environ 111:208–217

    Article  Google Scholar 

  12. Naidoo QL, Naidoo S, Petrik L, Nechaev A, Ndungu P (2012) Int J Hydrogen Energy 37:9459–9469

    Article  CAS  Google Scholar 

  13. Zhao Y, Zhou Y, Xiong B, Wang J, Chen X, O’Hayre R, Shao Z (2013) J Solid State 17:1089–1098

    CAS  Google Scholar 

  14. Zhao J, Zhang L, Xue H, Wang ZB, Hu HQ (2012) RSC Adv 2:9651–9659

    Article  CAS  Google Scholar 

  15. Xin Y, Liu J, Jie X, Wang Z, Hu H (2012) Electrochim Acta 60:354–358

    Article  CAS  Google Scholar 

  16. Chu SW, Baek SJ, Kim DC, Seo S, Kim JS, Park YW (2012) Synth Met 162:1689–1693

    Article  CAS  Google Scholar 

  17. Yao Z, Nie H, Yang Z, Zhou XM, Liu Z, Huang SM (2012) Chem Commun 48:1027–1029

    Article  CAS  Google Scholar 

  18. Zhang LS, Liang XQ, Song WG, Wu ZY (2010) PCCP 12:12055–12059

    Article  CAS  Google Scholar 

  19. Zhao M, Wu X, Cai C (2009) J Phys Chem C 113:4987–4996

    Article  CAS  Google Scholar 

  20. Qian K, Liu HL, Yang LB, Liu JH (2012) J Nanoscale 4:6449–6454

    Article  CAS  Google Scholar 

  21. Wu G, Chen YS, Xu BQ (2005) Electrochem Commun 7:1237–1243

    Article  CAS  Google Scholar 

  22. William S, Hummers JR, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  Google Scholar 

  23. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  24. Sun L, Wang L, Tian CG, Tan TX, Xie Y, Shi KY, Li MT, Fu HG (2012) RSC Adv 2:4498–4506

    Article  CAS  Google Scholar 

  25. Atta NF, Galal A, Khalifa F (2007) Appl Surf Sci 253:4273–4282

    Article  CAS  Google Scholar 

  26. Jeong HK, Lee P, Lahaye RJWE, Park MH, An KH, Kim IJ, Yang CW, Park CY, Ruoff RS, Lee YH (2008) J Am Chem Soc 130:1362–1366

    Article  CAS  Google Scholar 

  27. Mo Z, Zheng R, Peng H, Liang HG, Liao SJ (2014) J Power Sources 245:801–807

    Article  CAS  Google Scholar 

  28. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Science 323:760–764

    Article  CAS  Google Scholar 

  29. Li W, Wu HW, Chen JM, Xue HG, Kong Y (2013) Synth Met 185–186:56–60

    Article  Google Scholar 

  30. Hyeon T, Han S, Sung YE, Park KW, Kim YW (2003) Angew Chem 115:4488–4492

    Article  Google Scholar 

  31. Guo S, Dong S, Wang E, Wang E (2009) ACS Nano 4:547–555

    Article  Google Scholar 

  32. Guo S, Dong S, Wang E, Wang E (2009) Small 5:1869–1876

    Article  CAS  Google Scholar 

  33. Hsin YL, Hwang KC, Yeh CT (2007) J Am Chem Soc 129:9999–10010

    Article  CAS  Google Scholar 

  34. Xu X, Zhou Y, Yuan T, Li Y (2013) Electrochim Acta 112:587–595

    Article  CAS  Google Scholar 

  35. Wu B, Hu D, Kuang Y, Kuang Y, Yu Y, Zhang X, Chen J (2011) Chem Commun 47:5253–5255

    Article  CAS  Google Scholar 

  36. Kashyout AB, Nassr A, Giorgi L, Maiyalagan T, Youssef B (2011) Int J Electrochem Sci 6:379–393

    CAS  Google Scholar 

  37. Bard AJ, Faulkner LR (1980) Electrochemical methods—fundamentals and applications. New York

  38. Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger JM, Lamy C (1998) J Electroanal Chem 444:41–53

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (21275023) and Technology Support Plan of Jiangsu Province (BE 2012050). The authors thank for Dr. Yuanwen Jiang from the University of Chicago to polish the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijuan Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Chen, Y., Xie, A. et al. Synthesis of PtNFs/PANI/NG with enhanced electrocatalytic activity towards methanol oxidation. Ionics 21, 1277–1286 (2015). https://doi.org/10.1007/s11581-014-1298-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1298-6

Keywords

Navigation