Skip to main content

Advertisement

Log in

An innovative catalyst of PdNiP nanosphere deposited PEDOT:PSS/rGO hybrid material as an efficient electrocatalyst for alkaline urea oxidation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Efficient and low-cost materials to generate electrical energy from small organic materials are highly demanded for a large-scale commercialization of direct urea fuel cells. The purpose of this work is to improve the electrochemical performance of nickel phosphide (Ni) through palladium (Pd) doping via the facile solvothermal method and dispersing the obtained palladium nickel phosphide (PdNiP) on poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate)/reduced graphene oxide (PEDOT:PSS/rGO) support material via a simple ultrasonic process. The electrochemical activities of Pd doped NiP and PdNiP@PEDOT:PSS/rGO electrodes toward urea electrooxidation were tested using cyclic voltammetry (CV). The CV test reveals the significant efficiency improvement in nickel phosphide (NiP) upon Pd doping, and further improvement was achieved when obtained PdNiP dispersed on PEDOT:PSS/rGO toward alkaline urea oxidation. Since PdNiP@PEDOT:PSS/rGO remarkably outperformed NiP and PdNiP, it is a promising novel material for alkaline urea oxidation in a direct urea fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Materials are available for all.

References

  1. Vedharathinam V, Botte GG (2012) Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium. Electrochim Acta 81:292–300. https://doi.org/10.1016/j.electacta.2012.07.007

    Article  CAS  Google Scholar 

  2. Mariana Y, Ayudia T, Gunlazuardi J, Yulizar Y, Wibowo R (2021) Recent progress in direct urea fuel cell. Open Chem 19:1116–1133. https://doi.org/10.1515/chem-2021-0100

    Article  CAS  Google Scholar 

  3. Shi W, Ding R, Li X, Xu Q, Liu E (2017) Enhanced performance and electrocatalytic kinetics of Ni-Mo/graphene nanocatalysts towards alkaline urea oxidation reaction. Electrochim Acta 242:247–259. https://doi.org/10.1016/j.electacta.2017.05.002

    Article  CAS  Google Scholar 

  4. Urbańczyk E, Jaroń A, Simka W (2017) Electrocatalytic oxidation of urea on a sintered Ni–Pt electrode. J Appl Electrochem 47:133–138. https://doi.org/10.1007/s10800-016-1024-3

    Article  CAS  Google Scholar 

  5. Ren X, Lv Q, Liu L, Liu B, Wang Y, Liu A, Wu G (2019) Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain Energy Fuels 4:15–30. https://doi.org/10.1039/c9se00460b

    Article  CAS  Google Scholar 

  6. Ya-Cheng Shai J-JF, Lin X-X, Zhang L, Yuan J, Zhang Q-L, Wang A-J (2019) One-step hydrothermal synthesis of three-dimensional nitrogen_doped reduced graphene oxide hydrogels anchored PtPd alloyed nanoparticles for ethylene glycol oxidation and hydrogen evolution reactions. Electrochim Acta 293:504–513

    Article  Google Scholar 

  7. Kucernak ARJ, Sundaram VNN (2014) Nickel phosphide: the effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium. J mater chem 2:17435–17445. https://doi.org/10.1039/c4ta03468f

    Article  CAS  Google Scholar 

  8. Tu J, Wang M, Xiao X, Lei H, Jiao S (2019) Nickel phosphide: the effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium. J mater chem 2:17435–17445. https://doi.org/10.1039/c4ta03468f

    Article  Google Scholar 

  9. Huang J, Li F, Liu B, Zhang P (2020) Ni2P/rGO/NF nanosheets as a bifunctional high-performance electrocatalyst for water splitting. Mater 13:744. https://doi.org/10.3390/ma13030744

    Article  CAS  Google Scholar 

  10. Wang S, Xie Y, Shi K, Zhou W, Xing Z, Pan K, Cabot A (2020) Monodispersed nickel phosphide nanocrystals in situ grown on reduced graphene oxide with controllable size and composition as a counter electrode for dye-sensitized solar cells. Acs Sustain Chem Eng 8:5920–5926. https://doi.org/10.1021/acssuschemeng.0c00005

    Article  CAS  Google Scholar 

  11. Lera IL, Khasnabis S, Wangatia LM, Femi OE, Ramamurthy PC (2021) Insights into electrochemical behavior and kinetics of NiP on PEDOT:PSS/reduced graphene oxide as high-performance electrodes for alkaline urea oxidation. J Solid State Electrochem 26:195–209. https://doi.org/10.1007/s10008-021-05080-z

    Article  CAS  Google Scholar 

  12. Wang Y, Sun Y, Zong Y, Zhang L, Lan Y, Xing H, Li X, Zheng X (2019) Microwave absorption enhancement of nickel cobalt phosphides by decorating on reduced graphene oxide. J Solid State Chem 277:201–208. https://doi.org/10.1016/j.jssc.2019.06.019

    Article  CAS  Google Scholar 

  13. Tan JL, De Jesus AM, Chua SL, Sanetuntikul J, Shanmugam S, Tongol BJV, Kim H (2017) Preparation and characterization of palladium-nickel on graphene oxide support as anode catalyst for alkaline direct ethanol fuel cell. Appl Catal. 531:29–35. https://doi.org/10.1016/j.apcata.2016.11.034

    Article  CAS  Google Scholar 

  14. Yu Z, Xu J, Amorim I, Li Y, Liu L (2021) Easy preparation of multifunctional ternary PdNiP/C catalysts toward enhanced small organic molecule electro-oxidation and hydrogen evolution reactions. J Energy Chem 58:256–263. https://doi.org/10.1016/j.jechem.2020.10.016

    Article  CAS  Google Scholar 

  15. Sankar S, Sugawara Y, Assa Aravindh S, Jose R, Tamaki T, Anilkumar GM, Yamaguchi T (2020) Tuning Palladium Nickel Phosphide toward Efficient Oxygen Evolution Performance. ACS Appl Energy Mater 3:879–888. https://doi.org/10.1021/acsaem.9b01996

    Article  CAS  Google Scholar 

  16. Ding R, Li X, Shi W, Xu Q, Wang L, Jiang H, Yang Z, Liu E (2016) Mesoporous Ni-P nanocatalysts for alkaline urea electrooxidation. Electrochim Acta 222:455–462. https://doi.org/10.1016/j.electacta.2016.10.198

    Article  CAS  Google Scholar 

  17. Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu W, Voon CH (2017) Synthesis of Graphene Oxide using Modified Hummers Method : Solvent Influence. Procedia Eng 184:469–477. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  18. Jiang R, Tran DT, McClure JP, Chu D (2014) A class of (Pd-Ni-P) electrocatalysts for the ethanol oxidation reaction in alkaline media. ACS Catal 4:2577–2586. https://doi.org/10.1021/cs500462z

    Article  CAS  Google Scholar 

  19. Weng CC, Ren JT, Yuan ZY (2020) Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. ChemSusChem 13:3357–3375. https://doi.org/10.1002/cssc.202000416

    Article  CAS  Google Scholar 

  20. Lee U, Lee YN, Yoon YS (2020) Enhanced electrochemical properties of catalyst by phosphorous addition for direct urea fuel cell. Front Chem 8:777. https://doi.org/10.3389/fchem.2020.00777

    Article  CAS  Google Scholar 

  21. Sobhani A, Salavati-Niasari M (2016) Simple synthesis and characterization of nickel phosphide nanostructures assisted by different inorganic precursors. J Mater Sci Mater Electron 27:3619–3627. https://doi.org/10.1007/s10854-015-4199-1

    Article  CAS  Google Scholar 

  22. Nie S, Zhang C, Peng C, Wang DY, Ding D, He Q (2015) Study of the synergistic effect of nanoporous nickel phosphates on novel intumescent flame retardant polypropylene composites. J Spectrosc 2015:2–7. https://doi.org/10.1155/2015/289298

    Article  CAS  Google Scholar 

  23. Zhao Q, Jamal R, Zhang L, Wang M, Abdiryim T (2014) The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res Lett 9:1–9. https://doi.org/10.1186/1556-276X-9-557

    Article  CAS  Google Scholar 

  24. Liu Y, Weng B, Razal JM, Xu Q, Zhao C, Hou Y, Seyedin S, Jalili R, Wallace GG, Chen J (2015) High-performance flexible all-solid-state supercapacitor from large free-standing graphene-pedot/pss films. Sci Rep 5:17045. https://doi.org/10.1038/srep17045

    Article  CAS  Google Scholar 

  25. Chemchoub S, Oularbi L, El Attar A, Younssi SA, Bentiss F, Jama C, El Rhazi M (2020) Cost-effective non-noble metal supported on conducting polymer composite such as nickel nanoparticles/polypyrrole as efficient anode electrocatalyst for ethanol oxidation. Mater Chem Phys 250:123009. https://doi.org/10.1016/j.matchemphys.2020.123009

    Article  CAS  Google Scholar 

  26. Pan Y, Liu Y, Zhao J, Yang K, Liang J, Liu D, Hu W, Liu D, Liu Y, Liu C (2015) Monodispersed nickel phosphide nanocrystals with different phases: Synthesis, characterization and electrocatalytic properties for hydrogen evolution. J Mater Chem A 3:1656–1665. https://doi.org/10.1039/c4ta04867a

    Article  CAS  Google Scholar 

  27. Ozcan S, Erer MC, Vempati S, Uyar T, Toppare L, Çırpan A (2020) Graphene oxide-doped PEDOT:PSS as hole transport layer in inverted bulk heterojunction solar cell. J Mater Sci: Mater Electron 31:3576–3584. https://doi.org/10.1007/s10854-020-02906-w

    Article  CAS  Google Scholar 

  28. Boscarino S, Filice S, Sciuto A, Libertino S, Scuderi M, Galati C, Scalese S (2019) Investigation of ZnO-decorated CNTs for UV light detection applications. Nanomaterials 9:1099 https://doi.org/10.3390/nano9081099

    Article  CAS  Google Scholar 

  29. Junfeng Liu XY, Luo Z, Li J, Llorca J, Nasiou D, Arbiol J, Meyns M, Cabot A (2018) Graphene-supported palladium phosphide PdP2 nanocrystals for ethanol electrooxidation. Appl Catal B 242:256–266. https://doi.org/10.1016/j.apcatb.2018.09.105

    Google Scholar 

  30. Lera IL, Khasnabis S, Wangatia LM, Femi OE (2021) Polypyrrole @ polyaniline-reduced graphene oxide nanocomposite support material and Cobalt for the enhanced electrocatalytic activity of nickel phosphide microsphere towards alkaline urea oxidation. Mater Res Express 8: https://doi.org/10.1088/2053-1591/ac2287

    Article  CAS  Google Scholar 

  31. Yang D, Gu Y, Yu X, Lin Z, Xue H, Feng L (2018) Nanostructured Ni2P-C as an Efficient Catalyst for Urea Electrooxidation. Chem Electro Chem 5:659–664. https://doi.org/10.1002/celc.201701304

    Article  CAS  Google Scholar 

  32. Liu H, Zhu S, Cui Z, Li Z, Wu S, Liang Y (2021) Ni2P nanoflakes for high-performing urea oxidation reaction: linking active sites to a UOR mechanism. Nanoscale 13:1759–1769. https://doi.org/10.1039/D0NR08025J

  33. Li Q, Li X, Gu J, Li Y, Tian Z, Pang H (2020) Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res 12:2–8. https://doi.org/10.1007/s12274-020-3190-1

    Article  CAS  Google Scholar 

  34. Chakrabarty S, Offen-Polak I, Lior K, David E (2020) Urea oxidation electrocatalysis on nickel hydroxide: the role of disorder. J Solid State Electrochem 18:1569–1584 https://doi.org/10.1007/s10008-020-04744-6

    Google Scholar 

  35. Xu J, Wang P, Yu R, Zheng Z, Shoaib Ahmad Shah S, Chen C (2020) A new insight into the effect of scan rate and mass transport from Pt rotating disk electrode on the electrochemical oxidation process of methanol. Mater Lett 260: https://doi.org/10.1016/j.matlet.2019.126950

    Article  CAS  Google Scholar 

  36. Aghazadeh M, Ghaemi M, Sabour B, Dalvand S (2014) Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. J Solid State Electrochem 18:1569–1584. https://doi.org/10.1007/s10008-014-2381-7

    Article  CAS  Google Scholar 

  37. Hameed RMA, El-Khatib KM (2010) Ni-P and Ni-Cu-P modified carbon catalysts for methanol electro-oxidation in KOH solution. Int J Hydrog Energy 35:2517–2529. https://doi.org/10.1016/j.ijhydene.2009.12.145

    Article  CAS  Google Scholar 

  38. Latif IA, Merza SH (2020) Effect of scan rate and ph on determination amoxilline using screen printed carbon electrode modified with functionalized graphene oxide. J Appl Sci 31:1863. https://doi.org/10.30526/31.1.1863

    Google Scholar 

  39. Kotkar RM, Desai PB, Srivastava AK (2007) Behavior of riboflavin on plain carbon paste and aza macrocycles based chemically modified electrodes. Sens Actuators B Chem 124:90–98. https://doi.org/10.1016/j.snb.2006.12.004

    Article  CAS  Google Scholar 

  40. Barakat NAM, Amen MT, Al-Mubaddel FS, Karim MR, Alrashed M (2019) NiSn nanoparticle-incorporated carbon nanofibers as efficient electrocatalysts for urea oxidation and working anodes in direct urea fuel cells. J Adv Res 16:43–53. https://doi.org/10.1016/j.jare.2018.12.003

    Article  CAS  Google Scholar 

  41. Abdel Hameed RM, Medany SS (2019) Improved electrocatalytic kinetics of nickel hydroxide nanoparticles on Vulcan XC-72R carbon black towards alkaline urea oxidation reaction. Inter J Hydrog Energy 44:3636–3648. https://doi.org/10.1016/j.ijhydene.2018.12.079

    Article  CAS  Google Scholar 

  42. Wang G, Ye K, Shao J, Zhang Y, Zhu K, Cheng K, Yan J, Wang G, Cao D (2018) Porous Ni2P nanoflower supported on nickel foam as an efficient three-dimensional electrode for urea electro-oxidation in alkaline medium. Int J Hydrog Energy 43:9316–9325. https://doi.org/10.1016/j.ijhydene.2018.03.221

    Article  CAS  Google Scholar 

  43. Li G, Anderson L, Chen Y, Pan M, Abel Chuang P-Y (2018) New insights into evaluating catalyst activity and stability of oxygen evolution reactions in alkaline media. Sustain Energy Fuels 2:237–251. https://doi.org/10.1039/C7SE00337D

    Article  CAS  Google Scholar 

  44. Primož J, Simon SV, Martin S, Nejc H (2018) In situ electrochemical dissolution of platinum and gold in organic-based solvent. NPJ Mater Degrad 2:9. https://doi.org/10.1038/s41529-018-0031-8

    Article  CAS  Google Scholar 

  45. Zerdoumi R, Leonard R, Armbrüster M (2019) Addressing the Stability of Bulk Electrode Materials in the Electrochemical Methanol Oxidation. J Electrochem Soc 166(14):1079. https://doi.org/10.1149/2.0631914jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge Ministry of science and higher education, Ethiopia for financial support and the support from members of Professor Praveen Ramamurthy’ Laboratory is highly appreciated. I would like to Acknowlege the support from Jimma Institute of Technology, Jimma University. Furthermore, acknowledgement to the office of International Relations (OIR) Indian Institute of Science for the Short-term International visiting student awarded to me.

Funding

This work was supported by the Ministry of Science and Higher Education, Ethiopia, and IoE grant R(VI)090/23/2019–20 356 (Indian Institute of Science, India).

Author information

Authors and Affiliations

Authors

Contributions

IL conceptualization, methodology, investigation, writing-original draft, writing-review and editing, validation, project administration SK Resources, validation, editing, facilitating LW data curation, supervision, project administration, FO data curation, supervision PCR Supervision, validation, Resources, material funding acquisition.

Corresponding authors

Correspondence to Israel Leka Lera, Olu Emmanuel Femi or Praveen C. Ramamurthy.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

Participate at all processes.

Consent for publication

Participate at all processes.

Ethical standards

No ethics problem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lera, I.L., Khasnabis, S., Wangatia, L.M. et al. An innovative catalyst of PdNiP nanosphere deposited PEDOT:PSS/rGO hybrid material as an efficient electrocatalyst for alkaline urea oxidation. Polym. Bull. 80, 1265–1283 (2023). https://doi.org/10.1007/s00289-022-04100-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04100-w

Keywords

Navigation