Skip to main content
Log in

Electrodeposition of nanostructured Pt–Pd bimetallic catalyst on polyaniline-camphorsulfonic acid/graphene nanocomposites for methanol electrooxidation

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Recently, the use of polymer-supported bimetallic catalysts to reduce the cost of direct methanol fuel cells (DMFCs) and increase the efficiency of catalysts has been considered. In this work, the preparation of platinum–palladium supported on polyaniline-doped camphorsulfonic acid/graphene (Pt–Pd@ PANI-CSA/graphene) nanocomposites as an anode material in DMFCs is reported. PANI-CSA/graphene nanocomposite was prepared from aniline-doped CSA and graphene by in situ polymerization in ice water. In order to characterize the structure and the surface properties of prepared materials, Fourier transform infrared spectrum (FTIR), X-ray diffraction spectroscopy (XRD), and scanning electron microscopy (SEM) techniques were employed. The electrochemical properties of the nanocatalysts were evaluated through cyclic voltammetry (CV) and chronoamperometry (CA) measurements. The results suggested that PANI-CSA/graphene nanocomposite as a support material had an especially positive effect on the electrocatalytic activity of Pt–Pd for methanol oxidation reaction (MOR) in alkaline media. Also the results of chronoamperometric studies showed that Pt–Pd@ PANI-CSA/graphene was more stable than unsupported Pt–Pd for methanol electrooxidation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Radhakrishnan T, Sandhyarani N (2017) Three dimensional assembly of electrocatalytic platinum nanostructures on reduced graphene oxide–an electrochemical approach for high performance catalyst for methanol oxidation. Int J Hydrog Energy 42(10):7014–7022

    Article  CAS  Google Scholar 

  2. Dong L, Gari RRS, Li Z, Craig MM, Hou S (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48(3):781–787

    Article  CAS  Google Scholar 

  3. Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119

    Article  CAS  Google Scholar 

  4. Ahmadi R, Amini M, Bennett J (2012) Pt–Co alloy nanoparticles synthesized on sulfur-modified carbon nanotubes as electrocatalysts for methanol electrooxidation reaction. J Catal 292:81–89

    Article  CAS  Google Scholar 

  5. Long NV, Yang Y, Thi CM, Van Minh N, Cao Y, Nogami M (2013) The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells. Nano Energy 2(5):636–676

    Article  CAS  Google Scholar 

  6. Papadimitriou S, Armyanov S, Valova E, Hubin A, Steenhaut O, Pavlidou E, Kokkinidis G, Sotiropoulos S (2010) Methanol oxidation at Pt − Cu, Pt − Ni, and Pt − Co electrode coatings prepared by a galvanic replacement process. J Phy Chem C 114(11):5217–5223

    Article  CAS  Google Scholar 

  7. Muller DA, Wang D, DiSalvo FJ, Abruña HD, Wang H, Xin HL, Hovden R, Yu Y (2013) Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12(1):81

    Article  PubMed  CAS  Google Scholar 

  8. Wang Y-J, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115(9):3433–3467

    Article  CAS  PubMed  Google Scholar 

  9. Mu Y, Liang H, Hu J, Jiang L, Wan L (2005) Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J Phys Chem B 109(47):22212–22216

    Article  CAS  PubMed  Google Scholar 

  10. Coutanceau C, Brimaud S, Lamy C, Léger J-M, Dubau L, Rousseau S, Vigier F (2008) Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds. Electrochim Acta 53(23):6865–6880

    Article  CAS  Google Scholar 

  11. Hyeon T, Han S, Sung YE, Park KW, Kim YW (2003) High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils. Angew Chem Int Ed 42(36):4352–4356

    Article  CAS  Google Scholar 

  12. Liu C-S, Liu X-C, Wang G-C, Liang R-P, Qiu J-D (2014) Preparation of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for oxygen reduction and methanol oxidation. J Electroanal Chem 728:41–50

    Article  CAS  Google Scholar 

  13. Jin Y, Fang M, Jia M (2014) In situ one-pot synthesis of graphene–polyaniline nanofiber composite for high-performance electrochemical capacitors. Appl Surf Sci 308:333–340

    Article  CAS  Google Scholar 

  14. Westervelt R (2008) Graphene nanoelectronics. Science 320(5874):324–325

    Article  CAS  PubMed  Google Scholar 

  15. Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    Article  CAS  PubMed  Google Scholar 

  16. Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12(6):2745–2750

    Article  CAS  PubMed  Google Scholar 

  17. Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471

    Article  CAS  PubMed  Google Scholar 

  18. Wang R, Han M, Zhao Q, Ren Z, Guo X, Xu C, Hu N, Lu L (2017) Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sc Rep 7:44562

    Article  CAS  Google Scholar 

  19. Li K, Liu J, Huang Y, Bu F, Xu Y (2017) Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability. J Mater Chem A 5(11):5466–5474

    Article  CAS  Google Scholar 

  20. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci 1(3):225–255

    Google Scholar 

  21. Gnana kumar G, Kirubaharan CJ, Udhayakumar S, Karthikeyan C, Nahm KS (2014) Conductive polymer/graphene supported platinum nanoparticles as anode catalysts for the extended power generation of microbial fuel cells. Ind Eng Chem Res 53(43):16883–16893

    Article  CAS  Google Scholar 

  22. Cui Z, Guo CX, Li CM (2013) Self-assembled phosphomolybdic acid–polyaniline–graphene composite-supported efficient catalyst towards methanol oxidation. J Mater Chem A 1(22):6687–6692

    Article  CAS  Google Scholar 

  23. Eris S, Daşdelen Z, Yıldız Y, Sen F (2017) Nanostructured polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for methanol oxidation. Int J Hydrog Energy 43:1337–1343

    Article  CAS  Google Scholar 

  24. Lu XM, Wu QF, Mi HY, Zhang XG (2007) Electrochemical capacitance of camphorsulfonic acid doped polyaniline microtubes prepared at low temperature. Acta Phys Chim Sin 23(06):820–824

    CAS  Google Scholar 

  25. Łużny W, Piwowarczyk K (2011) Hydrogen bonds in camphorsulfonic acid doped polyaniline. Polimery 56(9):652–656

    Article  Google Scholar 

  26. Park SH, Shin KH, Kim JY, Yoo SJ, Lee KJ, Shin J, Choi JW, Jang J, Sung YE (2012) The application of camphorsulfonic acid doped polyaniline films prepared on TCO-free glass for counter electrode of bifacial dye-sensitized solar cells. J Photochem Photobiol, A 245:1–8

    Article  CAS  Google Scholar 

  27. Tabrizi AG, Arsalani N, Mohammadi A, Ghadimi LS, Ahadzadeh I, Namazi H (2018) A new route for the synthesis of polyaniline nanoarrays on graphene oxide for high-performance supercapacitors. Electrochim Acta 265:379–390

    Article  CAS  Google Scholar 

  28. Bienkowski K (2006) Polyaniline and its derivatives doped with Lewis acids-synthesis and spectroscopic properites. Dissertation, Université Joseph-Fourier-Grenoble I; Warsaw University of Technology

  29. Huang J, Wan M (1999) In situ doping polymerization of polyaniline microtubules in the presence of β-naphthalenesulfonic acid. J Polym Sci A 37(2):151–157

    Article  CAS  Google Scholar 

  30. Fard LA, Ojani R, Raoof JB, Zare EN, Lakouraj MM (2017) Poly (pyrrole-co-aniline) hollow nanosphere supported Pd nanoflowers as high-performance catalyst for methanol electrooxidation in alkaline media. Energy 127:419–427

    Article  CAS  Google Scholar 

  31. Fard LA, Ojani R, Raoof JB, Zare EN, Lakouraj MM (2017) PdCo porous nanostructures decorated on polypyrrole@ MWCNTs conductive nanocomposite—modified glassy carbon electrode as a powerful catalyst for ethanol electrooxidation. Appl Surf Sci 401:40–48

    Article  CAS  Google Scholar 

  32. Goswami S, Maiti U, Maiti S, Nandy S, Mitra M, Chattopadhyay K (2011) Preparation of graphene–polyaniline composites by simple chemical procedure and its improved field emission properties. Carbon 49(7):2245–2252

    Article  CAS  Google Scholar 

  33. Trchova M, Stejskal J, Prokeš J (1999) Infrared spectroscopic study of solid-state protonation and oxidation of polyaniline. Synth Met 101(1–3):840–841

    Article  CAS  Google Scholar 

  34. Chaudhari H, Kelkar D (1997) Investigation of structure and electrical conductivity in doped polyaniline. Polym Int 42(4):380–384

    Article  CAS  Google Scholar 

  35. Elnaggar EM, Kabel KI, Farag AA, Al-Gamal AG (2017) Comparative study on doping of polyaniline with graphene and multi-walled carbon nanotubes. J. Nanostruct Chem 7(1):75–83

    Article  CAS  Google Scholar 

  36. Trung NB, Van Tam T, Kim HR, Hur SH, Kim EJ, Choi WM (2014) Three-dimensional hollow balls of graphene–polyaniline hybrids for supercapacitor applications. Chem Eng J 255:89–96

    Article  CAS  Google Scholar 

  37. Li Y, Tang L, Li J (2009) Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem Commun 11(4):846–849

    Article  CAS  Google Scholar 

  38. Yang X, Yang Q, Xu J, Lee C-S (2012) Bimetallic PtPd nanoparticles on Nafion–graphene film as catalyst for ethanol electro-oxidation. J Mater Chem 22(16):8057–8062

    Article  CAS  Google Scholar 

  39. Wang L, Lu X, Lei S, Song Y (2014) Graphene-based polyaniline nanocomposites: preparation, properties and applications. J Mater Chem A 2(13):4491–4509

    Article  CAS  Google Scholar 

  40. Xu J, Wang K, Zu S-Z, Han B-H, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9):5019–5026

    Article  CAS  PubMed  Google Scholar 

  41. Zhu H, Wang J, Liu X, Zhu X (2017) Three-dimensional porous graphene supported Ni nanoparticles with enhanced catalytic performance for methanol electrooxidation. Int J Hydrog Energy 42(16):11206–11214

    Article  CAS  Google Scholar 

  42. Fard LA, Ojani R, Raoof JB (2016) Electrodeposition of three-dimensional Pd nanoflowers on a PPy@ MWCNTs with superior electrocatalytic activity for methanol electrooxidation. Int J Hydrog Energy 41(40):17987–17994

    Article  CAS  Google Scholar 

  43. Liang R, Hu A, Persic J, Zhou YN (2013) Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation. Nano Micro Lett 5(3):202–212

    Article  CAS  Google Scholar 

  44. Rahim MA, Hameed RA, Khalil M (2004) Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J Power Sources 134(2):160–169

    Article  CAS  Google Scholar 

  45. Li X, Niu X, Zhang W, He Y, Pan J, Yan Y, Qiu F (2017) One-pot anchoring of Pd nanoparticles on nitrogen-doped carbon through dopamine self-polymerization and activity in the electrocatalytic methanol oxidation reaction. Chemsuschem 10(5):976–983

    Article  CAS  PubMed  Google Scholar 

  46. Gharibi H, Kakaei K, Zhiani M, Taghiabadi MM (2011) Effect of polyaniline-doped trifluoromethane sulfonic acid nanofiber composite film thickness on electrode for methanol oxidation. Int J Hydrog Energy 36(20):13301–13309

    Article  CAS  Google Scholar 

  47. Yao Z, Yue R, Zhai C, Jiang F, Wang H, Du Y, Wang C, Yang P (2013) Electrochemical layer-by-layer fabrication of a novel three-dimensional Pt/graphene/carbon fiber electrode and its improved catalytic performance for methanol electrooxidation in alkaline medium. Int J Hydrog Energy 38(15):6368–6376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moslem Mansour Lakouraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oskueyan, G., Mansour Lakouraj, M. Electrodeposition of nanostructured Pt–Pd bimetallic catalyst on polyaniline-camphorsulfonic acid/graphene nanocomposites for methanol electrooxidation. J Appl Electrochem 49, 755–765 (2019). https://doi.org/10.1007/s10800-019-01321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01321-2

Keywords

Navigation