Skip to main content
Log in

Effect of Ni/Mn ratio on the performance of LiNi x Mn2 −  x O4 cathode material for lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium nickel manganate is recognized as a type of promising cathode material for lithium-ion battery, due to its advantages such as high voltage, high power density, and relative lower cost. In this paper, a series of LiNi x Mn2 − x O4 cathode materials with various molar ratio of Ni/Mn have been prepared with a co-precipitation method, followed by a solid state reaction, and the effect of the molar ratio of Ni/Mn on the structure and properties of materials are intensively investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), and performance measurements, etc. It is revealed that all the samples with x from 0 to 0.5 have well-defined spinel structure and fit well to Fd-3 m space group. With the increase of the molar ratio of Ni/Mn, the diffraction peaks shift to higher angle slightly and the lattice parameter decreases gradually by the XRD results. Furthermore, it is found that the capacity at the 4.0 V plateau decreases while the capacity at 4.7 V plateau increases with the increase of the ratio of Ni/Mn, and the total discharge capacity shows growth trend with the increase of Ni content. It is important that all the samples with various molar ratio of Ni/Mn exhibit good cyclic stability. Based on the experimental results, we suggest that the Ni may incorporate into the lattice of LiMn2O4 substituting of Mn. The plateau at 4.7 V is related to the Ni ions and the plateau at 4.0 V is related to the Mn ions in the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Santhanam R, Rambabu B (2010) J Power Sources 195:5442–5451

    Article  CAS  Google Scholar 

  2. Zhu Z, Yan H, Zhang D, Li W, Lu Q (2013) J Power Sources 224:13–19

    Article  CAS  Google Scholar 

  3. Li D, Ito A, Kobayakawa K, Noguchi H, Sato Y (2006) J Power Sources 161:1241–1246

    Article  CAS  Google Scholar 

  4. Zhu Z, Zhang D, Yan H, Li W, Qilu (2013) J Mater Chem A 1:5492–5496

    Article  CAS  Google Scholar 

  5. Fu L, Liu H, Li C, Wu Y, Rahm E, Holze R, Wu H (2005) Prog Mater Sci 50:881–928

    Article  CAS  Google Scholar 

  6. Chemelewski KR, Lee ES, Li W, Manthiram A (2013) Chem Mater 25:2890–2897

    Article  CAS  Google Scholar 

  7. Ivanova S, Zhecheva E, Stoyanova R, Nihtianova D, Wegner S, Tzvetkova P, Simova S (2011) J Phys Chem C 115:25170–25182

    Article  CAS  Google Scholar 

  8. Lee ES, Manthiram A (2013) J Mater Chem A 1:3118–3126

    Article  CAS  Google Scholar 

  9. Liu J, Sun Z, Xie J, Chen H, Wu N, Wu B (2013) J Power Sources 240:95–100

    Article  CAS  Google Scholar 

  10. Yi CW, Shi JY, Kim K (2011) Abstr Pap Am Chem Soc 241:1155

    Google Scholar 

  11. Zhao G, Lin Y, Zhou T, Lin Y, Huang Y, Huang Z (2012) J Power Sources 215:63–68

    Article  CAS  Google Scholar 

  12. Huang YY, Zeng XL, Zhou C, Wu P, Tong DG (2013) J Mater Sci 48:625–635

    Article  CAS  Google Scholar 

  13. Qian Y, Deng Y, Shi Z, Zhou Y, Zhuang Q, Chen G (2013) Electrochem Commun 27:92–95

    Article  CAS  Google Scholar 

  14. Cao A, Manthiram A (2012) Phys Chem Chem Phys 14:6724–6728

    Article  CAS  Google Scholar 

  15. Zhong QM, Bonakdarpour A, Zhang MJ, Gao Y, Dahn JR (1997) J Electrochem Soc 144:205–213

    Article  CAS  Google Scholar 

  16. Kunduraci M, Amatucci GG (2007) J Power Sources 165:359–367

    Article  CAS  Google Scholar 

  17. Wei YJ, Kim KB, Chen G (2006) Electrochim Acta 51:3365–3373

    Article  CAS  Google Scholar 

  18. Wu HM, Tu JP, Chen XT, Li Y, Zhao X, Cao GS (2007) J Solid State Electrochem 11:173–176

    Article  Google Scholar 

  19. Gu X, Li XW, Xu LQ, Xu HY, Yang J, Qian YT (2012) Int J Electrochem Sci 7:2504–2512

    CAS  Google Scholar 

  20. Liu ZS, Jiang YM, Zeng XY, Xiao G, Song HY, Liao SJ (2014) J Power Sources 247:437–443

    Article  CAS  Google Scholar 

  21. Wei Y, Nam K, Kim K, Chen G (2006) Solid State Ionics 177:29–35

    Article  CAS  Google Scholar 

  22. Nakamura T, Yamada Y, Tabuchi M (2005) J Appl Phys 98:093905

    Article  Google Scholar 

  23. Xu Y, Chen G, Fu E, Zhou M, Dunwell M, Fei L, Deng S, Andersen P, Wang Y, Jia Q, Luo H (2013) RSC Adv 3:18441–18445

    Article  CAS  Google Scholar 

  24. Gu X, Xu LQ, Xu HY, Yang J, Qian YT (2012) Int J Electrochem Sci 7:2504–2512

    CAS  Google Scholar 

  25. Shin DW, Bridges CA, Huq A, Paranthaman MP, Manthiram A (2012) Chem Mater 24:3720–3731

    Article  CAS  Google Scholar 

  26. Kunduraci M, Al-Sharaband JF, Amatucci GG (2006) Chem Mater 18:3585–3592

    Article  CAS  Google Scholar 

  27. Wang L, Li H, Huang X, Baudrin E (2011) Solid State Ionics 193:32–38

    Article  CAS  Google Scholar 

  28. Lee ES, Nam KW, Hu E, Manthiram A (2012) Chem Mater 24:3610–3620

    Article  CAS  Google Scholar 

  29. Wen SJ, Richardson TJ, Ma L, Striebel KA, Ross PN Jr, Cairns EJ (1996) J Electrochem Soc 143:136–138

    Article  Google Scholar 

  30. Wu YP, Rahm E, Holze R (2002) Electrochim Acta 47:3491–3507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (NSFC Project Nos. 21076089, 21276098, 11132004, U1301245), Guangdong Natural Science Foundation (Project No S2012020011061), Doctoral Fund of Ministry of Education of China (20110172110012), and Doctoral Fund of Department of Education of Guangdong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-jun Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, W., Luo, R., Liu, Zs. et al. Effect of Ni/Mn ratio on the performance of LiNi x Mn2 −  x O4 cathode material for lithium-ion battery. Ionics 20, 1361–1366 (2014). https://doi.org/10.1007/s11581-014-1114-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1114-3

Keywords

Navigation