Skip to main content
Log in

Developing a sensor for the simultaneous determination of adrenaline, uric acid, and tryptophan

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A chemically modified electrode is constructed based on a coumestan derivative and multiwall carbon nanotubes modified carbon paste electrode (CMWCNT-CPE). The surface charge transfer rate constant, k s, and the charge transfer coefficient, α, for the electron transfer between coumestan and MWCNT-CPE were estimated. CMWCNT-CPE presents a highly catalytic activity for adrenaline (AD) electrooxidation. The results show that the peak potential of AD at the CMWCNT-CPE surface shifted by about 145 mV toward negative values compared with that at the MWCNT-CPE surface. Differential pulse voltammetry exhibited three linear ranges and a detection limit of 0.2 μM for AD. For a mixture containing AD, uric acid (UA), and tryptophan (Trp), three signals corresponding to the analytes could well separate them from each other. Moreover, CMWCNT-CPE was used to determine AD in an adrenaline injection solution and UA in a human urine sample with satisfactory results. To confirm the proposed method, the AD injection solution and the urine sample were spiked with different certain amounts of AD, UA, and Trp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ren W, Luo HQ, Li NB (2006) Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. Biosens Bioelectron 21:1086–1092

    Article  CAS  Google Scholar 

  2. Shahrokhian S, Ghalkhani M, Amini MK (2009) Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid. Sens Actuators B 137:669–675

    Article  CAS  Google Scholar 

  3. Michałowski J, Hałaburda P (2001) Flow-injection chemiluminescence determination of epinephrine in pharmaceutical preparations using raw apple juice as enzyme source. Talanta 55:1165–1171

    Article  Google Scholar 

  4. Lin Z, Wu X, Lin X, Xie Z (2007) End-column chemiluminescence detection for pressurized capillary electrochromatographic analysis of norepinephrine and epinephrine. J Chromatogr A 1170:118–121

    Article  CAS  Google Scholar 

  5. Su Y, Wang J, Chen G (2005) Determination of epinephrine based on its enhancement for electrochemiluminescence of lucigenin. Talanta 65:531–536

    Article  CAS  Google Scholar 

  6. Carrera V, Sabater E, Vilanova E, Sogorb MA (2007) A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures. J Chromatogr B 847:88–94

    Article  CAS  Google Scholar 

  7. Solich P, Polydorou CK, Koupparis MA, Efstathiou CE (2000) Automated flow-injection spectrophotometric determination of catecholamines (epinephrine and isoproterenol) in pharmaceutical formulations based on ferrous complex formation. J Pharm Biomed Anal 22:781–789

    Article  CAS  Google Scholar 

  8. Gosetti F, Mazzucco E, Gennaro MC, Marengo E (2013) Simultaneous determination of sixteen underivatized biogenic amines in human urine by HPLC-MS/MS. Anal Bioanal Chem 405:907–916

    Article  CAS  Google Scholar 

  9. Luczak T (2009) Comparison of electrochemical oxidation of epinephrine in the presence of interfering ascorbic and uric acids on gold electrodes modified with S-functionalized compounds and gold nanoparticles. Electrochim Acta 54:5863–5870

    Article  CAS  Google Scholar 

  10. Wang Y, Chen Z (2009) A novel poly(taurine) modified glassy carbon electrode for the simultaneous determination of epinephrine and dopamine. Colloids Surf B 74:322–327

    Article  CAS  Google Scholar 

  11. Hu GZ, Zhang DP, Wu WL, Yang ZS (2008) Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode. Colloids Surf B 62:199–205

    Article  CAS  Google Scholar 

  12. Moraes FC, Golinelli DLC, Mascaro LH, Machado SAS (2010) Determination of epinephrine in urine using multi-walled carbon nanotube modified with cobalt phthalocyanine in a paraffin composite electrode. Sens Actuators B 148:492–497

    Article  CAS  Google Scholar 

  13. Goyal RN, Bishnoi S (2011) Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode. Talanta 84:78–83

    Article  CAS  Google Scholar 

  14. Wang MY, Xu XY, Yang F, Zhang SY, Yang XJ (2008) Development of an amperometric sensor for simultaneous determination of uric acid and ascorbic acid using 2-[bis(2-aminoethyl)amino]ethanol, 4,4′-bipyridine bridged dicopper(II) complex. J Appl Electrochem 38:1269–1274

    Article  CAS  Google Scholar 

  15. Wang Z, Xia J, Zhu L, Zhang F, Guo X, Li Y, Xia Y (2012) The fabrication of poly (acridine orange)/graphene modified electrode with electrolysis micelle disruption method for selective determination of uric acid. Sens Actuators B 161:131–136

    Article  CAS  Google Scholar 

  16. Zare HR, Shishehbore MR, Nematollahi D (2011) A highly sensitive and selective sensor on the basis of 4-hydroxy-2-(triphenylphosphonio)phenolate and multi-wall carbon nanotubes for electrocatalytic determination of folic acid in presence of ascorbic acid and uric acid. Electrochim Acta 58:654–661

    Article  CAS  Google Scholar 

  17. Babu RS, Prabhua P, Narayanan SS (2011) Selective electrooxidation of uric acid in presence of ascorbic acid at a room temperature ionic liquid/nickel hexacyanoferarrate nanoparticles composite electrode. Colloids Surf B 88:755–763

    Article  CAS  Google Scholar 

  18. Guan Y, Wu T, Ye J (2005) Determination of uric acid and p-aminohippuric acid in human saliva and urine using capillary electrophoresis with electrochemical detection: potential application in fast diagnosis of renal disease. J Chromatogr B 821:229–234

    Article  CAS  Google Scholar 

  19. Munoz JA, Lopez–Mesas M, Valiente M (2010) Development and validation of a simple determination of urine metabolites (oxalate, citrate, uric acid and creatinine) by capillary zone electrophoresis. Talanta 81:392–397

    Article  CAS  Google Scholar 

  20. Lykkesfeldt J (2000) Determination of ascorbic acid and dehydroascorbic acid in biological samples by high-performance liquid chromatography using subtraction methods: reliable reduction with tris[2-carboxyethyl]phosphine hydrochloride. Analy Biochem 282:89–93

    Article  CAS  Google Scholar 

  21. Tang H, Hu G, Jiang S, Liu X (2009) Selective determination of uric acid in the presence of ascorbic acid at poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode. J Appl Electrochem 39:2323–2328

    Article  CAS  Google Scholar 

  22. Jin GP, Lin XQ (2004) The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine. Electrochem Commun 6:454–460

    Article  CAS  Google Scholar 

  23. Tang X, Liu Y, Hou H, You T (2010) Electrochemical determination of L-tryptophan, L-tyrosine and L-cysteine using electrospun carbon nanofibers modified electrode. Talanta 80:2182–2186

    Article  CAS  Google Scholar 

  24. Fang B, Wei Y, Li M, Wang G, Zhang W (2007) Study on electrochemical behavior of tryptophan at a glassy carbon electrode modified with multi-walled carbon nanotubes embedded cerium hexacyanoferrate. Talanta 72:1302–1306

    Article  CAS  Google Scholar 

  25. Huang KJ, Xu CX, Xie WZ, Wang W (2009) Electrochemical behavior and voltammetric determination of tryptophan based on 4-aminobenzoic acid polymer film modified glassy carbon electrode. Colloids Surf B 74:167–171

    Article  CAS  Google Scholar 

  26. Agboola BO, Vilakazi SL, Ozoemena KI (2009) Electrochemistry at cobalt(II)tetrasulfophthalocyanine-multi-walled carbon nanotubes modified glassy carbon electrode: a sensing platform for efficient suppression of ascorbic acid in the presence of epinephrine. J Solid State Electrochem 13:1367–1379

    Article  CAS  Google Scholar 

  27. Ensafi AA, Taei M, Khayamian T (2010) Simultaneous determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(p-xylenolsulfonephthalein) modified glassy carbon electrode. Colloids Surf B 79:480–487

    Article  CAS  Google Scholar 

  28. Zare HR, Nasirizadeh N (2010) Simultaneous determination of ascorbic acid, adrenaline and uric acid at a hematoxylin multi-wall carbon nanotube modified glassy carbon electrode. Sens Actuators B 143:666–672

    Article  CAS  Google Scholar 

  29. Gentil V, Lader MH, Kantamaneni BD, Curzon G (1977) Effects of adrenaline injection on human plasma tryptophan and non-esterified fatty acids. Clin Sci Mol Med 53:227–232

    CAS  Google Scholar 

  30. Zare HR, Nasirizadeh N (2006) Electrocatalytic characteristics of hydrazine and hydroxylamine oxidation at coumestan modified carbon paste electrode. Electroanalysis 18:507–512

    Article  CAS  Google Scholar 

  31. Zare HR, Nasirizadeh N, Golabi M, Namazian M, Mazloum-Ardakani M, Nematollahi D (2006) Electrochemical evaluation of coumestan modified carbon paste electrode: study on its application as a NADH biosensor in presence of uric acid. Sens Actuators 114:610–617

    Article  CAS  Google Scholar 

  32. Nasirizadeh N, Shekari Z, Zare HR, Shishehbore MR, Fakhari AR, Ahmar H (2013) Electrosynthesis of an imidazole derivative and its application as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, adrenaline, acetaminophen, and tryptophan at a multi-wall carbon nanotubes modified electrode surface. Biosens Bioelectronics 41:608–614

    Article  CAS  Google Scholar 

  33. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  34. Zare HR, Shekari Z, Nasirizadeh N, Jafari AA (2012) Fabrication, electrochemical characteristics and electrocatalytic activity of 4-((2-hydroxyphenylimino)methyl)benzene-1,2-diol electrodeposited on a carbon nanotube modified glassy carbon electrode as a hydrazine sensor. Catal Sci Technol 2:2492–2501

    Article  CAS  Google Scholar 

  35. Nasirizadeh N, Zare HR, Fakhari AR, Ahmar H, Ahmadzadeh MR, Naeimi A (2011) A study of the electrochemical behavior of an oxadiazole derivative electrodeposited on multi-wall carbon nanotube-modified electrode and its application as a hydrazine sensor. J Solid State Electrochem 15:2683–2693

    Article  CAS  Google Scholar 

  36. Zare HR, Nasirizadeh N, Ajamain H, Sahragard A (2011) Preparation, electrochemical behavior and electrocatalytic activity of chlorogenic acid multi-wall carbon nanotubes as a hydroxylamine sensor. Mater Sci Eng C 31:975–982

    Article  CAS  Google Scholar 

  37. Zare HR, Nasirizadeh N, Chatraei F, Makarem S (2009) Electrochemical behavior of an indenedione derivative electrodeposited on a renewable sol-gel derived carbon ceramic electrode modified with multi-wall carbon nanotubes: application for electrocatalytic determination of hydrazine. Electrochim Acta 54:2828–2836

    Article  CAS  Google Scholar 

  38. Antoniadou S, Jannakoudakis AD, Theodoridou E (1989) Electrocatalytic reactions on carbon fibre electrodes modified by hemine II. Electro–oxidation of hydrazine. Synth Met 30:295–304

    Article  CAS  Google Scholar 

  39. Bard AJ, Falkner LR (2001) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  40. Andrieux CP, Saveat JM (1978) Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J Electroanal Chem 93:163–168

    Article  CAS  Google Scholar 

  41. Ensafi AA, Rezaei B, Mirahmadi Zare SZ, Taei M (2010) Simultaneous determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(3,3-bis[N,N-bis(carboxymethyl)aminomethyl]-o-cresolsulfonephthalein) modified glassy carbon electrode. Sens Actuators B 150:321–329

    Article  CAS  Google Scholar 

  42. Shahrokhian S, Saberi RS (2011) Electrochemical preparation of over-oxidized polypyrrole/multi–walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination. Electrochim Acta 57:132–138

    Article  CAS  Google Scholar 

  43. Lu X, Li Y, Du J, Zhou X, Xue Z, Liu X, Wang Z (2011) A novel nanocomposites sensor for epinephrine detection in the presence of uric acids and ascorbic acids. Electrochim Acta 56:7261–7266

    Article  CAS  Google Scholar 

  44. Salem FB (1987) Spectrophotometric and titrimetric determination of catecholamines. Talanta 34:810–812

    Article  CAS  Google Scholar 

  45. Newman DJ, Price CA (1999) Renal function and nitrogen metabolites. In: Tietz textbook of clinical chemistry, 3rd edn. W.B. Saunders, Philadelphia

    Google Scholar 

  46. Li X, Zhang S, Sun C (2003) Fabrication of a covalently attached multilayer film electrode containing cobalt phthalocyanine and its electrocatalytic oxidation of hydrazine. J Electroanal Chem 553:139–145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Nasirizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasirizadeh, N., Shekari, Z. Developing a sensor for the simultaneous determination of adrenaline, uric acid, and tryptophan. Ionics 20, 275–285 (2014). https://doi.org/10.1007/s11581-013-0956-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0956-4

Keywords

Navigation