Skip to main content

Advertisement

Log in

A study of the electrochemical behavior of an oxadiazole derivative electrodeposited on multi-wall carbon nanotube-modified electrode and its application as a hydrazine sensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, an oxadiazole multi-wall carbon nanotube-modified glassy carbon electrode (OMWCNT−GCE) was used as a highly sensitive electrochemical sensor for hydrazine determination. The surface charge transfer rate constant, k s, and the charge transfer coefficient, α, for electron transfer between GCE and electrodeposited oxadiazole were calculated as 19.4 ± 0.5 s−1 and 0.51, respectively at pH = 7.0. The obtained results indicate that hydrazine peak potential at OMWCNT−GCE shifted for 14, 109, and 136 mV to negative values as compared with oxadiazole-modified GCE, MWCNT−GCE, and activated GCE surface, respectively. The electron transfer coefficient, α, and the heterogeneous rate constant, k′, for the oxidation of hydrazine at OMWCNT−GCE were also determined by cyclic voltammetry measurements. Two linear dynamic ranges of 0.6 to 10.0 μM and 10.0 to 400.0 μM and detection limit of 0.17 μM for hydrazine determination were evaluated using differential pulse voltammetry. In addition, OMWCNT−GCE was shown to be successfully applied to determine hydrazine in various water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Majidi MR, Jouyban A, Zeynali KA (2007) Electrochim Acta 52:6248

    Article  CAS  Google Scholar 

  2. Prabakar SJR, Narayanan SS (2008) J Electroanal Chem 617:111

    Article  CAS  Google Scholar 

  3. Zheng L, Song JF (2009) Sens Actuators B 135:650

    Article  Google Scholar 

  4. Fang B, Zhang C, Zhang W, Wang G (2009) Electrochim Acta 55:178

    Article  CAS  Google Scholar 

  5. Abbaspour A, Shamsipur M, Siroueinejad A, Kia R, Raithby PR (2009) Electrochim Acta 54:2916

    Article  CAS  Google Scholar 

  6. Umar A, Rahman MM, Hahn YB (2009) Talanta 77:1376

    Article  CAS  Google Scholar 

  7. Wang G, Gu A, Wang W, Wei Y, Wu J, Wang G, Zhang X, Fang B (2009) Electrochem Commun 11:631

    Article  CAS  Google Scholar 

  8. Mo JW, Ogorevc B, Zhang X, Pihlar B (2000) Electroanalysis 12:48

    Article  CAS  Google Scholar 

  9. Haji Shabani AM, Dadfarnia S, Dehghan K (2004) Bull Korean Chem Soc 25:213

    Article  Google Scholar 

  10. Afkhami A, Afshar-E-Asl A (2000) Anal Chim Acta 419:101

    Article  CAS  Google Scholar 

  11. George M, Nagaraja KS, Balasubramanian N (2008) Talanta 75:27

    Article  CAS  Google Scholar 

  12. Afkhami A, Zarei AR (2004) Talanta 62:559

    Article  CAS  Google Scholar 

  13. Safavi A, Karimi MA (2002) Talanta 58:785

    Article  CAS  Google Scholar 

  14. Safavi A, Baezzat MR (1998) Anal Chim Acta 358:121

    Article  CAS  Google Scholar 

  15. Yi Q, Yu W (2009) J Electroanal Chem 633:159

    Article  CAS  Google Scholar 

  16. Karimnezhad G, Jafarloo R, Dorraji PS (2009) Electrochim Acta 54:5721

    Article  CAS  Google Scholar 

  17. Li J, Lin X (2007) Sens Actuators 126:527

    Article  Google Scholar 

  18. Asazawa K, Yamada K, Tanaka H, Taniguchi M, Oguro K (2009) J Power Sources 191:362

    Article  CAS  Google Scholar 

  19. Zen JM, Kumar AS, Tsai MD (2003) Electroanalysis 15:1073

    Article  CAS  Google Scholar 

  20. Golabi SM, Zare HR (1999) J Electroanal Chem 465:168

    Article  CAS  Google Scholar 

  21. Salimi A, Hallaj R (2004) Electroanalysis 16:1964

    Article  CAS  Google Scholar 

  22. Zare HR, Sobhani Z, Ardakani MM (2007) J Solid State Electrochem 11:971

    Article  CAS  Google Scholar 

  23. Golabi SM, Zare HR (1999) Electroanalysis 11:1293

    Article  CAS  Google Scholar 

  24. Golabi SM, Zare HR, Hamzehloo M (2001) Microchem J 69:111

    Article  CAS  Google Scholar 

  25. Zare HR, Nasirizadeh N (2007) Electrochim Acta 52:4153

    Article  CAS  Google Scholar 

  26. Zare HR, Nasirizadeh N (2006) Electroanalysis 18:507

    Article  CAS  Google Scholar 

  27. Zare HR, Habibirad AM (2006) J Solid State Electrochem 10:348

    Article  CAS  Google Scholar 

  28. Zare HR, Nasirizadeh N (2010) Sens Actuators B 143:666

    Article  Google Scholar 

  29. Baughman RH, Zakhidov A, de Heer WA (2002) Science 279:787

    Article  Google Scholar 

  30. Ang LM, Hor TSA, Xu GQ, Tung CH, Zhao SP, Wang JLS (2000) Carbon 38:363

    Article  CAS  Google Scholar 

  31. Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Nature 393:346

    Article  CAS  Google Scholar 

  32. Manisankar P, Abirama Sundari PL, Sasikumar R, Palaniappan SP (2008) Talanta 76:1022

    Article  CAS  Google Scholar 

  33. Yang D, Zhu L, Jiang X (2010) J Electroanal Chem 640:17

    Article  CAS  Google Scholar 

  34. Salimi A, Hallaj R (2005) Talanta 66:967

    Article  CAS  Google Scholar 

  35. Moghaddam AB, Ganjali MR, Dinarvand R, Norouzi P, Saboury AA, Moosavi-Movahedi AA (2007) Biophys Chem 128:30

    Article  CAS  Google Scholar 

  36. Frehill F, Vos JG, Benrezzak S, Koos AA, Konya Z, Ruther MG, Blau WJ, Fonseca A, Nagy JB, Biro LP, Minett AI, Panhuis M (2002) J Am Chem Soc 124:13694

    Article  CAS  Google Scholar 

  37. Chen RJ, Zhang Y, Wang D, Dai H (2001) J Am Chem Soc 123:3838

    Article  CAS  Google Scholar 

  38. Fakhari AR, Davarani SSH, Ahmar H, Hasheminasab K, Khavasi HR (2009) J Heterocyclic Chem 46:443

    Article  CAS  Google Scholar 

  39. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  40. Zare HR, Golabi SM (1999) J Electroanal Chem 464:14

    Article  CAS  Google Scholar 

  41. Pariente F, Tobalina F, Darder M, Lorenzo E, Abruna HD (1996) Anal Chem 68:3135

    Article  CAS  Google Scholar 

  42. Jaegfeldt H, Torstensson A, Gorton L, Johansson G (1981) Anal Chem 53:1979

    Article  CAS  Google Scholar 

  43. Laviron E (1979) J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  44. Zare HR, Nasirizadeh N, Ardakani MM (2005) J Electroanal Chem 577:2005

    Google Scholar 

  45. Ju H, Shen C (2001) Electroanalysis 13:789

    Article  CAS  Google Scholar 

  46. Nasirizadeh N, Zare HR (2009) Talanta 80:656

    Article  CAS  Google Scholar 

  47. Britto PJ, Santhanam KSV, Ajayan PM (1996) Bioelectrochem Bioenerg 41:121

    Article  CAS  Google Scholar 

  48. Antoniadou S, Jannakoudakis AD, Theodoridou E (1989) Synth Met 30:295

    Article  CAS  Google Scholar 

  49. Andrieux CP, Saveant JM (1978) J Electroanal Chem 93:163

    Article  CAS  Google Scholar 

  50. Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry, 4th edn. Pearson Education Ltd., Harlow

    Google Scholar 

  51. Quintino MSM, Araki K, Toma HE, Angnes L (2008) Talanta 74:730

    Article  CAS  Google Scholar 

  52. Zare HR, Nasirizadeh N, Chatraei F, Makarem S (2009) Electrochim Acta 54:2828

    Article  CAS  Google Scholar 

  53. ASTM D1385−01 Standard test method for hydrazine in water

  54. Li X, Zhang S, Sun C (2003) J Electroanal Chem 553:139

    Article  CAS  Google Scholar 

  55. Chen X, Xiang Y, Li Z, Tong A (2008) Anal Chim Acta 625:41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their appreciation to the Islamic Azad University (Yazd) Research Council for financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Nasirizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasirizadeh, N., Zare, H.R., Fakhari, A.R. et al. A study of the electrochemical behavior of an oxadiazole derivative electrodeposited on multi-wall carbon nanotube-modified electrode and its application as a hydrazine sensor. J Solid State Electrochem 15, 2683–2693 (2011). https://doi.org/10.1007/s10008-010-1259-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1259-6

Keywords

Navigation