Skip to main content
Log in

Polymerized carbon nanotube paste electrode as a sensing material for the detection of adrenaline with folic acid

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A new intuition to construct the sensitive platform based on the poly(phenylmethanoic acid) modified carbon nanotube paste electrode (PPMAMCNTPE) to investigate the electroanalytical performance of adrenaline (AN), which acts as both neurotransmitter and hormone. The PPMAMCNTPE reveals a high detectability than the bare carbon nanotube paste electrode (BCNTPE) through cyclic voltammetry technique. The surface morphology and electrochemical conductivity of the BCNTPE and PPMAMCNTPE was characterized by field emission-scanning electron microscopy and electrochemical impedance spectroscopy. The number of factors affecting the analytical signal were optimized. The lowest detection limit (4.5 × 10–8 M) was gained within a linearity of the AN concentration range of 10–110 µM via differential pulse voltammetry approach at the PPMAMCNTPE. The designed sensor holds a great reproducibility, repeatability, and an outstanding anti-fouling feature. The PPMAMCNTPE possesses an admirable selectivity in the presence of folic acid. Finally, the PPMAMCNTPE was effectively implemented for the voltammetric detection of AN in both injection and blood serum samples.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li J, Wang X, Duan H, Wang Y, Luo C (2016) Mater Sci Eng C 64:391

    Article  CAS  Google Scholar 

  2. Koteshwara Reddy K, Satyanarayana M, Yugender Goud K, Vengatajalabathy Gobi K, Kim H (2017) Mater Sci Eng C 79:93

    Article  CAS  Google Scholar 

  3. Li J, Lin X (2007) Anal Chim Acta 596:222

    Article  CAS  PubMed  Google Scholar 

  4. Dorraji PS, Jalali F (2014) Sens Actuators B Chem 200:251

    Article  CAS  Google Scholar 

  5. Ramya R, Muthukumaran P, Wilson J (2018) Biosens Bioelectron 108:53

    Article  CAS  PubMed  Google Scholar 

  6. Moghaddam HM, Beitollahi H, Tajik S, Soltani H (2015) Electroanalysis 27:2620

    Article  Google Scholar 

  7. Hemme WJ (2012) J Emerg Nurs 38:392

    Article  PubMed  Google Scholar 

  8. Razavian AS, Ghoreishi SM, Esmaeily AS, Behpour M, Monzon LMA, Coey JMD (2014) Microchim Acta 181:1947

    Article  CAS  Google Scholar 

  9. Mattioli IA, Cervini P, Cavalheiro É-TG (2020) Microchim Acta 318:1

    Google Scholar 

  10. Al-Ayash AS, Muhamad YH, Ghafouri SA (2011) Baghdad Sci J 8:110

    Article  Google Scholar 

  11. Bergmann ML, Sadjadi S, Schmedes A (2017) J Chromatogr B Anal Technol Biomed Life Sci 1057:118

    Article  CAS  Google Scholar 

  12. Woo HI, Yang JS, Oh HJ, Cho YY, Kim JH, Park H-D, Lee S-Y (2016) Clin Biochem 49:579

    Article  Google Scholar 

  13. Zhao Y, Zhao S, Huang J, Ye F (2011) Talanta 85:2650

    Article  CAS  PubMed  Google Scholar 

  14. Zheng R, Zhao C, Zhong J, Qiu Z, Hu Z (2019) Int J Electrochem Sci 14:9380

    Article  CAS  Google Scholar 

  15. Siva S, Venkatesh G, Antony A, Prabhu M, Sankaranarayanan RK, Rajendiran N (2012) Phys Chem Liq 50:434

    Article  CAS  Google Scholar 

  16. Manjunatha JG, Jayaprakash GK (2019) Eurasian J Anal Chem 14:1

    CAS  Google Scholar 

  17. Raril C, Manjunatha JG (2018) Mod Chem Appl 6:1

    Article  Google Scholar 

  18. Shashanka R, Esgin H, Yilmaz VM, Caglar Y (2020) J Sci Adv Mater Devices 5:185

    Article  Google Scholar 

  19. Shashanka R, Kamacı Y, Taş Y, Ceylan A, Bülbül S, Uzune O, Karaoglanli AC (2019) Phys Chem Res 4:799

    Google Scholar 

  20. Shashanka R (2019) J Mater Environ Sci 10:76

    Google Scholar 

  21. Shashanka R, Kumara Swamy BE (2020) SN Appl Sci 2:956

    Article  CAS  Google Scholar 

  22. Shashanka R, Chaira D, Kumara Swamy BE (2015) Int J Electrochem Sci 10:5586

    CAS  Google Scholar 

  23. Shashanka R (2020) J Iran Chem Soc 18:415

    Article  Google Scholar 

  24. Tajik S, Beitollahi H, Garkani Nejad F, Kirlikovali KO, Le QV, Jang HW, Varma RS, Farha OK, Shokouhimehr M (2020) Cryst Growth Des 10:7043

    Google Scholar 

  25. Mahmoudi-Moghaddam H, Tajik S, Beitollahi H (2019) Microchem J 150:104085

    Article  CAS  Google Scholar 

  26. Beitollahi H, Movahedifar F, Tajik S, Jahani S (2019) Electroanalysis 31:1195

    Article  CAS  Google Scholar 

  27. Beitollahi H, Mahmoudi-Moghaddam H, Tajik S (2018) Anal Lett 52:1432

    Article  Google Scholar 

  28. Tajik S, Dourandish Z, Zhang K, Beitollahi H, Le QV, Jang HW, Shokouhimehr M (2020) RSC Adv 10:15406

    Article  CAS  Google Scholar 

  29. Baghbamidi SE, Beitollahi H, Tajik S, Hosseinzadeh R (2016) Int J Electrochem Sci 11:10874

    Article  CAS  Google Scholar 

  30. Ganjali MR, Salimi H, Tajik S, Beitollahi H, Rezapour M, Larijani B (2017) Int J Electrochem Sci 12:5243

    Article  CAS  Google Scholar 

  31. Beitollahi H, Khalilzadeh MA, Tajik S, Safaei M, Zhang K, Jang HW, Shokouhimehr M (2020) ACS Omega 5:2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tajik S, Beitollahi H, Biparva P (2018) J Serb Chem Soc 3:863

    Article  Google Scholar 

  33. Karimi-Maleh H, Alizadeh M, Orooji Y, Karimi F, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK (2021) Ind Eng Chem Res 60:816

    Article  CAS  Google Scholar 

  34. Sathish R, Kumara Swamy BE, Aruna S, Mohan K, Shashanka R, Jayadevappa H (2012) Chem Sens 2:1

    Google Scholar 

  35. Shashanka R, Kumara Swamy BE, Sathish R, Chaira D (2013) Anal Bioanal Electrochem 5:455

    Google Scholar 

  36. Shashanka R, Chaira D, Kumara Swamy BE (2015) Int J Eng Res 6:1863

    Google Scholar 

  37. Shashanka R, Chaira D, Kumara Swamy BE (2016) Int J Eng Res 7:1275

    Google Scholar 

  38. Shashanka R (2018) Anal Bioanal Electrochem 10:349

    Google Scholar 

  39. Shashanka R, Kumara Swamy BE (2020) Phys Chem Res 8:1

    Google Scholar 

  40. Zhang A, Lieber CM (2015) Nano Bioelectron Chem Rev 116:215

    Google Scholar 

  41. Charithra MM, Manjunatha JG (2020) J Electrochem Sci Eng 10:29

    Article  CAS  Google Scholar 

  42. Teradal NL, Tandel RD, Seetharamappa J, Satpati AK (2019) Nanomed Nanotechnol Open Access 4:1

    Google Scholar 

  43. Ates M (2013) Mater Sci Eng C 33:1853

    Article  CAS  Google Scholar 

  44. Rao VP, Reddy YVM, Jyothi PJ, Kiranmai S, Madhavi G (2016) Chem Sci Trans 5:567

    Google Scholar 

  45. Charithra MM, Manjunatha JG (2020) ChemistrySelect 5:9323

    Article  Google Scholar 

  46. Brownson DAC, Banks CE (2014) Interpreting electrochemistry. Handbook of graphene electrochemistry. Springer, London, p 23

    Chapter  Google Scholar 

  47. Alam AU, Qin Y, Howlader MMR, Hu N-X, Jamal Deen M (2018) Sens Actuators B 254:896

    Article  CAS  Google Scholar 

  48. Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  49. Ensafi AA, Taei M, Khayamian T (2010) Colloids Surf B 79:480

    Article  CAS  Google Scholar 

  50. Mazloum-Ardakani M, Rajabzadeh N, Dehghani-Firouzabadi A, Sheikh-Mohseni MA, Benvidi A, Naeimi H, Akbari M, Karshenas A (2012) Anal Methods 4:2127

    Article  CAS  Google Scholar 

  51. Chandrashekar BN, Kumara Swamy BE, Gururaj KJ (2017) J Mol Liq 231:379

    Article  CAS  Google Scholar 

  52. Zare HR, Ghanbari Z, Nasirizadeh N, Benvidi A (2013) C R Chim 16:287

    Article  CAS  Google Scholar 

  53. Noroozifar M, Khorasani-Motlagh M, Akbari R, Bemanadi Parizi M (2014) Anal Bioanal Chem Res 1:62

    CAS  Google Scholar 

  54. Huang J, Xu W, Gong Y, Weng S, Lin X (2016) Int J Electrochem Sci 11:8193

    Article  CAS  Google Scholar 

  55. Ding M, Zhou YM, Liang XZ, Zou HB, Wang ZZ, Wang M, Ma JG (2016) J Electroanal Chem 763:25

    Article  CAS  Google Scholar 

  56. Wierzbicka E, Sulka GD (2016) Sens Actuators B Chem 222:270

    Article  CAS  Google Scholar 

  57. Manjunatha JG, Deraman M, Basri NH, Talib IA (2018) Arab J Chem 11:149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the SC/ST Fellowship No. MU/SCT RF/CR17/2017-18 Mangalore University and VGST, Bangalore under Research Project No. KSTePS/VGST-KFIST (L1)2016-2017/GRD-559/2017- 18/126/333, 21/11/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Manjunatha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charithra, M.M., Manjunatha, J.G., Sreeharsha, N. et al. Polymerized carbon nanotube paste electrode as a sensing material for the detection of adrenaline with folic acid. Monatsh Chem 152, 411–420 (2021). https://doi.org/10.1007/s00706-021-02756-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02756-0

Keywords

Navigation