Skip to main content
Log in

Electrical properties, equivalent circuit, and dielectric relaxation studies on [(C3H7)4N]2Cd2Cl6 polycrystalline

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The Ac electrical conductivity and the dielectric relaxation properties of the [(C3H7)4N]2Cd2Cl6 polycrystalline sample have been investigated by means of impedance spectroscopy measurements over a wide range of frequencies and temperatures, 209 Hz–5 MHz and 361–418 K, respectively. The purpose is to make a difference between the electrical and dielectric properties of the polycrystalline sample and single crystal. Besides, a detailed analysis of the impedance spectrum suggests that the electrical properties of the material are strongly temperature-dependent. Plots of (Z" versus Z') are well fitted to an equivalent circuit model consisting of a series combination of grains and grains boundary elements. Moreover, the temperature dependence of the electrical conductivity in the different phases follows the Arrhenius law and the frequency dependence of σ (ω) follows the Jonscher’s universal dynamic law. Furthermore, the modulus plots can be characterized by full width at half height or in terms of a nonexperiential decay function φ(t) = exp(t/t)β. Finally, the imaginary part of the permittivity constant is analyzed with the Cole–Cole formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gesi K (1992) Ferroelectrics 137:209

    Article  CAS  Google Scholar 

  2. Peercy PS, Morosin D (1971) Phys Lett A 36:409

    Article  CAS  Google Scholar 

  3. Ben Rhaiem A, Guidara K, Gargouri M, Daoud A (2003) Phys Status Solidi 198:350

    Article  CAS  Google Scholar 

  4. Tsang T, Utton DB (1976) J Chem Phys 57:3780

    Article  Google Scholar 

  5. Mlik Y, Couzi M (1982) J Phys C15:6891

    Google Scholar 

  6. Levola T, Laiho R (1988) Solid State Commun 66:557

    Article  Google Scholar 

  7. Aguirre-Zamalloa G, Rodriguez V, Couzi M, Sayetat F, Ferty P (1997) J Phys Condens Matter 9:937

    Article  CAS  Google Scholar 

  8. Diyaz-Herniandez J, Aguirre-Zamalloa G, Liopez-Echarri A, Ruiz-Larrea I, Breczewski T, Tello MJ (1997) J Phys Condens Matter 9:3399

    Article  Google Scholar 

  9. Laine R.M, Sanchez C, Brinker C.J, Gianellis E., Organic/inorganic hybrid materials, Materials Research Society Series, vol. 628, Pittsburgh, PA, 2000.

  10. Sanchez C, Lebeau B, Loy DA (2001) Mater Res Soc Bull 26:377

    Article  CAS  Google Scholar 

  11. Ben Rhaiem A, Hlel F, Guidara K, Gargouri M (2008) J Alloy Compd 463:440

    Article  CAS  Google Scholar 

  12. Hiroyuki H, Mashiyama H, Koshiji N (1989) Acta Crystallogr B 45:467

    Article  Google Scholar 

  13. Massiot A, Theile D, Germanuis H (1994) Bruker. A, Rep 43:140.

    Google Scholar 

  14. Kityk IV, Merwinskii RI, Kasperczyk J, Jossi S (1996) Mater Lett 27:233

    Article  CAS  Google Scholar 

  15. Ramtolli F, Saccinni G (2002) Cryst Res Technol 37:1325

    Article  CAS  Google Scholar 

  16. Lach G, Laskowski L, Kityk IV, Kapustianyk V, Rudyk V, Shchur Y, Tkaczyk S, Swiatek J, Piasecki M (2007) J NonCrystalline Solids 353:4342

    Article  Google Scholar 

  17. Majchrowski A, Kityk IV, Łukasiewicz T, Mefleh A, Benet S (2000) Opt Mater 15:51

    Article  CAS  Google Scholar 

  18. Murray CB, Norris DJ, Bawndi MG (1993) J Am Chem Soc 115:8706

    Article  CAS  Google Scholar 

  19. Oueslati A, Hlel F, Guidara K, Gargouri M (2010) J Alloys Compds 492:508

    Article  CAS  Google Scholar 

  20. Hannachi N, Chaabane I, Guidara K, Bulou A, Hlel F (2010)J. Mater.Sci. Eng. B 172:24.

    Google Scholar 

  21. Werner PE, Eriksson L, Westdhal M (1985) J Appl Crystatlogr 18:367

    Article  CAS  Google Scholar 

  22. Wolff PM (1968) J Appl Crystallogr 1:108

    Article  Google Scholar 

  23. Smith GS, Snyder RL (1979) J Appl Crystallogr 12:60

    Article  CAS  Google Scholar 

  24. Laugier J, Bochu B, Programme d’affinement des paramètres de maille à partir D’un Diagramme de poudre ; Laboratoire des matériaux et du Génie physique, Ecole Nationale Supérieure de Physique de Grenoble.

  25. MacDonald J (1987) R, Impedance Spectroscopy: Emphasizing Solid Materials and Systems. John Wiley & Sons, New York

    Google Scholar 

  26. Haittao Ye, Sun C, Hung H d, Hing P (2001) Thin Solid Films 381:52.

  27. Ye H, Sun C, Hung HD, Hing P (2001) Appl Phys Lett 78:1826

    Article  CAS  Google Scholar 

  28. M’Peko JC, Spavieri DL, de Souza MF (2002) Appl Phys Lett 81:2827

    Article  Google Scholar 

  29. Hodge LM, Ingram MD, West AR (1976) J Electroanal Chem 74:125

    Article  CAS  Google Scholar 

  30. Singh NK, Panigrahi A, Choudhary RNP (2001) Mater Lett 50:1

    Article  CAS  Google Scholar 

  31. Tareev B (1979) Physics of Dielectric Materials. Mir Publishers, Moscow

    Google Scholar 

  32. Macedo PB, Mognihan CT, Bose R (1972) Phys Chem Glasses 13:171

    CAS  Google Scholar 

  33. Ganguli M, Harish Bhat M, Rao K (1999) J Phys Chem Glasses 40:297

    CAS  Google Scholar 

  34. Lanfredi S, Saia PS, Lebullenger R, Hernandes AC (2002) Solid State Ionics 146:329

    Article  CAS  Google Scholar 

  35. Ghosh S, Ghosh A (2002) Solid State Ionics 149:67

    Article  CAS  Google Scholar 

  36. Sinclair DC, West AR (1989) J Appl Phys 66:3850

    Article  CAS  Google Scholar 

  37. Alvarez F, Alegria A, Colmenero J (1993) J Phys Rev B 47:125

    Article  CAS  Google Scholar 

  38. Alvarez F, Alegria A, Colmenero J (1991) J Phys Rev B 44:7306

    Article  Google Scholar 

  39. Alegria A, Echevarria E, Goiyiandia L, Telleria I, Colmenero (1995) J. Macromolecules 28:1516

    Article  CAS  Google Scholar 

  40. Hill RM, Jonscher AK (1979) J NonCryst Solids 32:53

    Article  CAS  Google Scholar 

  41. Mott NF, Davis EA (1979) Electronic Processes in Non-Crystalline Materials, 2nd edn. Clarendon, Oxford

    Google Scholar 

  42. Chen RH, Chang RY, Shern SC (2002) J Phys Chem Solids 63:2069

    Article  CAS  Google Scholar 

  43. Biju V, Khadar MA (2003) J Mater Sci 38:4055

    Article  CAS  Google Scholar 

  44. Kurien S, Mathew J, Sebastian S, Potty SN, George KC (2006) Mater Chem Phys 98:470

    Article  CAS  Google Scholar 

  45. Botthger H, Bryksin VV (1976) Phys Status Solidi B78:415

    Article  Google Scholar 

  46. Long AR (1982) Adv Phys 31:553

    Article  CAS  Google Scholar 

  47. Elliott SR (1987) Adv Phys 36:135

    Article  CAS  Google Scholar 

  48. Papathanassiou AN (2005) Mater Lett 59:1634

    Article  CAS  Google Scholar 

  49. Cramer ZC, Brunklaus S, Ratai E, Gao Y (2003) Phys Rev Lett 91:2601

    Article  Google Scholar 

  50. Papathanassiou AN (2005) J Phys Chem Solids 66:1849

    Article  CAS  Google Scholar 

  51. Ganguli M, Bhat MH, Rao K (1999) J Mater Res Bull 34:1757

    Article  CAS  Google Scholar 

  52. Suchanicz J (1998) Mater Sci Eng B 55:114

    Article  Google Scholar 

  53. Helimeier GH, Harrison SE (1963) Phys Rev 132:2010

    Article  Google Scholar 

  54. Tareev B (1988)Physics of Dielectric Materials, Izd. Mir, Moscow: 105.

  55. Chen SA, Liao CS (1993) Macromolecules 26:2810

    Article  CAS  Google Scholar 

  56. Tsangaris GM, Psarras GC, Kouloumbi N (1998) J Mater Sci 33:2027

    Article  CAS  Google Scholar 

  57. Nowick AS, Lim BS (1994) J NonCryst Solids 172:1389

    Article  Google Scholar 

  58. Bauerle JE (1969) J Phys Chem Solids 30:2657

    Article  CAS  Google Scholar 

  59. Williams G, Watts DC (1970) Trans Faraday Soc 66:80

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hannachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannachi, N., Guidara, K. & Hlel, F. Electrical properties, equivalent circuit, and dielectric relaxation studies on [(C3H7)4N]2Cd2Cl6 polycrystalline. Ionics 17, 463–471 (2011). https://doi.org/10.1007/s11581-011-0539-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-011-0539-1

Keywords

Navigation