Skip to main content
Log in

Robust non-zero-sum stochastic differential game of two insurers with common shock and CDS transaction

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

This paper considers the non-zero-sum stochastic differential game problem between two ambiguity-averse insurers (AAIs) with common shock. Each AAI’s surplus process consists of a proportional reinsurance protection and an investment in a money account, a stock and a credit default swap (CDS) with the objective of maximizing the expected utility of her relative terminal surplus with respect to that of her competitors. We consider default contagion risk of CDSs through a Markovian model with interacting default intensities. It is worthwhile to consider the uncertainty of the model on both the insurer herself and her competitors. In our model, we describe the surplus processes of two insurers by two jump-diffusion models with a common shock. Under jump-diffusion models, the robust Nash equilibrium strategies and the value functions for the all-default, one-default and all-alive case are derived under a worst-case scenario, respectively. Finally, through some numerical examples, we found some interesting results about the effects of some model parameters on the robust Nash equilibrium strategies, such as, the common shocks and the individual claims have the opposite effect on reinsurance investment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anderson, E.L., Hansen, L.P., Sargent, T.J.: Robustness detection and the price of risk. Working Paper, University of Chicago. https://files.nyu.edu/ts43/public/research/.svn/text-base/ahs3.pdf.svn-base (1999)

  2. Anderson, E.L., Hansen, L.P., Sargent, T.J.: A quartet of semigroups for model specification, robustness, prices of risk, and model detection. J. Eur. Econ. Assoc. 1(1), 68–123 (2003)

    Article  Google Scholar 

  3. Bai, L.H., Guo, J.Y.: Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint. Insur. Math. Econ. 42(3), 968–975 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bai, Y.F., Zhou, Z.B., Xiao, H.L., Gao, R.: A Stackelberg reinsurance-investment game with asymmetric information and delay. Optimization 70(10), 2131–2168 (2021)

    Article  MathSciNet  Google Scholar 

  5. Bensoussan, A., Siu, C., Yam, S., Yang, H.: A class of non-zero-sum stochastic differential investment and reinsurance games. Automatica 50(8), 2025–2037 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bi, J.N., Liang, Z.B., Yuen, K.C.: Optimal mean-variance investment/reinsurance with common shock in a regime-switching market. Math. Methods Oper. Res. 90(1), 109–135 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bielecki, T.R., Jang, I.: Portfolio optimization with a defaultable security. Asia-Pac. Financ. Mark. 13(2), 113–127 (2006)

    Article  Google Scholar 

  8. Bo, L.J., Capponi, A.: Optimal investment in credit derivatives portfolio under contagion risk. Math. Finance 26(4), 785–834 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bo, L.J., Capponi, A.: Dynamic investment and counterparty risk. Appl. Math. Optim. 77(1), 1–45 (2018)

    Article  MathSciNet  CAS  Google Scholar 

  10. Branger, N., Larsen, L.S.: Robust portfolio choice with uncertainty about jump and diffusion risk. J. Bank. Finance 37(12), 5036–5047 (2013)

    Article  Google Scholar 

  11. Browne, S.: Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin. Math. Oper. Res. 20(4), 937–958 (1995)

    Article  MathSciNet  Google Scholar 

  12. Browne, S.: Stochastic differential portfolio games. J. Appl. Probab. 37, 126–147 (2000)

    Article  MathSciNet  Google Scholar 

  13. Bui, T., Cheng, X., Jin, Z., Yin, G.: Approximation of a class of non-zero-sum investment and reinsurance games for regime-switching jump-diffusion models. Nonlinear Anal. Hybrid Syst. 32, 276–293 (2019)

    Article  MathSciNet  Google Scholar 

  14. Cao, J., Li, D., Young, V.R., Zou, B.: Stackelberg differential game for insurance under model ambiguity. Insur. Math. Econ. 106, 128–145 (2022)

    Article  MathSciNet  Google Scholar 

  15. Chen, S.M., Yang, H.L., Zeng, Y.: Stochastic differential games between two insurers with generalized mean-variance premium principle. ASTIN Bull. 48(1), 413–434 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ceci, C., Colaneri, K., Cretarola, A.: Optimal reinsurance and investment under common shock dependence between financial and actuarial markets. Insur. Math. Econ. 105, 252–278 (2022)

    Article  MathSciNet  Google Scholar 

  17. Deng, C., Zeng, X.D., Zhu, H.M.: Non-zero-sum stochastic differential reinsurance and investment games with default risk. Eur. J. Oper. Res. 264(3), 1144–1158 (2018)

    Article  MathSciNet  Google Scholar 

  18. Dufresne, F., Gerber, H.U.: Risk theory for the compound Poisson process that is perturbed by diffusion. Insur. Math. Econ. 10, 51–59 (1991)

    Article  MathSciNet  Google Scholar 

  19. Elliott, R.J.: The existence of value in stochastic differential games. Soc. Ind. Appl. Math. J. Control Optim. 14, 85–94 (1976)

    MathSciNet  Google Scholar 

  20. Guan, G.H., Liang, Z.B.: A stochastic Nash equilibrium portfolio game between two DC pension funds. Insur. Math. Econ. 70, 237–244 (2016)

    Article  MathSciNet  Google Scholar 

  21. Hu, D.N., Wang, H.L.: Robust reinsurance contract with learning and ambiguity aversion. Scand. Actuar. J. 2022(9), 794–815 (2022)

    Article  MathSciNet  Google Scholar 

  22. Huang, Y., Yang, X.Q., Zhou, J.M.: Optimal investment and proportional reinsurance for a jump-diffusion risk model with constrained control variables. J. Comput. Appl. Math. 296, 443–461 (2016)

    Article  MathSciNet  Google Scholar 

  23. Huang, Y., Ouyang, Y., Tang, L.X., Zhou, J.M.: Robust optimal investment and reinsurance problem for the product of the insurer’s and the reinsurer’s utilities. J. Comput. Appl. Math. 344, 532–552 (2018)

    Article  MathSciNet  Google Scholar 

  24. Jiménez-Lizárraga, M., Poznyak, A.: Robust Nash Equilibrium in multi-model LQ differential games: analysis and extraproximal numerical procedure. Optim. Control Appl. Methods 28(2), 117–141 (2007)

    Article  MathSciNet  Google Scholar 

  25. Kraft, H.: Optimal portfolios with stochastic interest rates and defaultable assets. Spring, Berlin (2004)

    Book  Google Scholar 

  26. Lacker, D., Zariphopoulou, T.: Mean field and n-agent games for optimal investment under relative performance criteria. Math. Finance 29(4), 1003–1038 (2019)

    Article  MathSciNet  Google Scholar 

  27. Li, D.P., Rong, X.M., Zhao, H.: Stochastic differential game formulation on the reinsurance and investment problem. Int. J. Control 88(9), 1861–1877 (2015)

    Article  MathSciNet  Google Scholar 

  28. Li, D.P., Zeng, Y., Yang, H.L.: Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps. Scand. Actuar. J. 2, 145–171 (2018)

    Article  MathSciNet  Google Scholar 

  29. Liang, Z.B., Bi, J.N., Yuen, K.C., Zhang, C.B.: Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence. Math. Methods Oper. Res. 84(1), 155–181 (2016)

    Article  MathSciNet  Google Scholar 

  30. Liang, Z.B., Zhang, C., Yuen, K.: Optimal reinsurance and investment in a jump-diffusion financial market with common shock dependence. J. Appl. Math. Comput. 56, 637–664 (2018)

    Article  MathSciNet  Google Scholar 

  31. Lin, X., Zhang, C.H., Siu, T.K.: Stochastic differential portfolio games for an insurer in a jump-diffusion risk process. Math. Methods Oper. Res. 75(1), 83–100 (2012)

    Article  MathSciNet  Google Scholar 

  32. Maenhout, P.J.: Robust portfolio rules and asset pricing. Rev. Financ. Stud. 17(4), 951–983 (2004)

    Article  Google Scholar 

  33. Maenhout, P.J.: Robust portfolio rules and dectection-error probabilities for a mean-reverting risk premium. J. Econ. Theory 128(1), 136–163 (2006)

    Article  Google Scholar 

  34. Mataramvura, S., Øksendal, B.: Risk minimizing and HJBI equations for stochastic differential games. Stochastics 80(4), 317–337 (2008)

    Article  MathSciNet  Google Scholar 

  35. Meng, H., Li, S., Jin, Z.: A reinsurance game between two insurance companies with nonlinear risk processes. Insur. Math. Econ. 62, 91–97 (2015)

    Article  MathSciNet  Google Scholar 

  36. Ming, Z., Liang, Z., Zhang, C.: Optimal mean-variance reinsurance with common shock dependence. ANZIAM J. 58(2), 162–181 (2016)

    Article  MathSciNet  Google Scholar 

  37. Pun, C.S., Wong, H.Y.: Robust non-zero-sum stochastic differential reinsurance game. Insur. Math. Econ. 68, 169–177 (2016)

    Article  MathSciNet  Google Scholar 

  38. Sun, J.Y., Li, Y.J., Zhang, L.: Robust portfolio choice for a defined contribution pension plan with stochastic income and interest rate. Commun. Stat. Theory Methods 47(17), 4106–4130 (2018)

    Article  MathSciNet  Google Scholar 

  39. Sun, Z.Y., Zheng, X.X., Zhang, X.: Robust optimal investment and reinsurance of an insurer under variance premium principle and default risk. J. Math. Anal. Appl. 446(2), 1666–1686 (2017)

    Article  MathSciNet  Google Scholar 

  40. Wang, N., Zhang, N., Jin, Z., Qian, L.Y.: Robust non-zero-sum investment and reinsurance game with default risk. Insur. Math. Econ. 84, 115–132 (2019)

    Article  MathSciNet  Google Scholar 

  41. Yang, H.L., Zhang, L.H.: Optimal investment for insurer with jump-diffusion risk process. Insur. Math. Econ. 37(3), 615–634 (2005)

    Article  MathSciNet  Google Scholar 

  42. Yang, P., Chen, Z.P., Wang, L.Y.: Time-consistent reinsurance and investment strategy combining quota-share and excess of loss for mean-variance insurers with jump-diffusion price process. Commun. Stat. Theory Methods 50(11), 2546–2568 (2019)

    Article  MathSciNet  Google Scholar 

  43. Yi, B., Li, Z.F., Viens, F.G., Zeng, Y.: Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model. Insur. Math. Econ. 53(3), 601–614 (2013)

    Article  MathSciNet  Google Scholar 

  44. Yuan, Y., Mi, H., Chen, H.: Mean-variance problem for an insurer with dependent risks and stochastic interest rate in a jump-diffusion market. Optimization 71(10), 2789–2818 (2022)

    Article  MathSciNet  Google Scholar 

  45. Yuen, K., Liang, Z., Zhou, M.: Optimal proportional reinsurance with common shock dependence. Insur. Math. Econ. 2015(64), 1–13 (2015)

    Article  MathSciNet  Google Scholar 

  46. Zeng, X.D.: A stochastic differential reinsurance game. J. Appl. Probab. 47(3), 335–349 (2010)

    Article  MathSciNet  Google Scholar 

  47. Zeng, X.D., Taksar, M.I.: A stochastic volatility model and optimal portfolio selection. Quant. Finance 13(10), 1547–1558 (2013)

    Article  MathSciNet  Google Scholar 

  48. Zeng, Y., Li, D.P., Chen, Z., Yang, Z.: Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility. J. Econ. Dyn. Control 88, 70–103 (2018)

    Article  MathSciNet  Google Scholar 

  49. Zhang, N., Jin, Z., Qian, L.Y., Fan, K.: Stochastic differential reinsurance games with capital injections. Insur. Math. Econ. 88, 7–18 (2019)

    Article  MathSciNet  Google Scholar 

  50. Zhang, X., Meng, H., Zeng, Y.: Optimal investment and reinsurance strategies for insurers with generalized mean-variance premium principle and no-short selling. Insur. Math. Econ. 67, 125–132 (2016)

    Article  MathSciNet  Google Scholar 

  51. Zhao, H., Shen, Y., Zeng, Y.: Time-consistent investment-reinsurance strategy for mean-variance insurers with a defaultable security. J. Math. Anal. Appl. 437(2), 1036–1057 (2016)

    Article  MathSciNet  Google Scholar 

  52. Zhao, H., Shen, Y., Zeng, Y., Zhang, W.: Robust equilibrium excess-of-loss reinsurance and CDS investment strategies for a mean-variance insurer with ambiguity aversion. Insur. Math. Econ. 88, 159–180 (2019)

    Article  MathSciNet  Google Scholar 

  53. Zhou, J.M., Deng, Y.C., Huang, Y., Yang, X.Q.: Optimal proportional reinsurance and investment for a constant elasticity of variance model under variance principle. Acta Math. Sci. 35B(2), 303–312 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Social Science Foundation of China (Grant No. 22BTJ058), the Natural Science Foundation of Hunan Province,China (Grant No. 2023JJ30381), the Changsha Municipal Natural Science Foundation,China (Grant No. kq2208159), the Doctoral Research Start-up Fund Project of Nanyang Institute of Technology, the Interdisciplinary Sciences Project of Nanyang Institute of Technology, and the Research Center of Mathematics and Applied Mathematics of Nanyang Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya Huang or Jieming Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Proofs of theorems, lemmas, and propositions

Proof of Proposition 2.3

Proof

According to the Eq. (2.3) and Itô’s formula, we have

$$\begin{aligned} dC_{i}(t)= & {} (1-H_{i}(t-))d\Phi _{i}(t,{\textbf {H}}(t))-\Phi _{i}(t,{\textbf {H}}(t-))dH_{i}(t)+\Delta (1-H_{i}(t))\Delta \Phi _{i}(t,{\textbf {H}}(t))\\= & {} (1-H_{i}(t-))d\Phi _{i}(t,{\textbf {H}}(t))-\Phi _{i}(t,{\textbf {H}}(t-))dH_{i}(t)-\Delta \Phi _{i}(t,{\textbf {H}}(t))dH_{i}(t)\\= & {} (1-H_{i}(t-))d\Phi _{i}(t,{\textbf {H}}(t))-\Phi _{i}(t,{\textbf {H}}(t-))dH_{i}(t)\\{} & {} -\,[\Phi _{i}(t,{\textbf {H}}^{i}(t-))-\Phi _{i}(t,{\textbf {H}}(t-))]dH_{i}(t), \end{aligned}$$

where the equality \(\Delta \Phi _{i}(t,{\textbf {H}}(t))dH_{i}(t)=[\Phi _{i}(t,{\textbf {H}}^{i}(t-))-\Phi _{i}(t,{\textbf {H}}(t-))]dH_{i}(t),\) which follows from the fact that our default model excludes the occurrence of simultaneous defaults. Hence, if the ith CDS defaults, any other name \(m\ne i\) would not, and \(\Delta \Phi _{i}(t,{\textbf {H}}(t))=\Phi _{i}(t,{\textbf {H}}^{i}(t-))-\Phi _{i}(t,{\textbf {H}}(t-))\). If \(m\ne i\) CDS defaults, then \(dH_{i}(t)=0\) and hence the above equality still holds.

From Eq. (2.6) of Lemma 2.2, we have

$$\begin{aligned} (1-H_{i}(t-))d\Phi _{i}(t,{\textbf {H}}(t))= & {} (1-H_{i}(t))\bigg [r(1-H_{i}(t))\Phi _{i}(t,{\textbf {H}}(t))-r\nu _{i}H_{i}(t)\Phi _{i}(t,{\textbf {H}}^{(1)}(t))\\{} & {} +\,\nu _{i}(1-H_{i}(t))\bigg ]dt\\{} & {} +\,(1-H_{i}(t-))\bigg \{[\Phi _{i}(t,{\textbf {H}}^{i}(t-))-\Phi _{i}(t,{\textbf {H}}(t-))]dM_{i}(t)\\{} & {} +\,[\Phi _{i}(t,{\textbf {H}}^{m}(t-))-\Phi _{i}(t,{\textbf {H}}(t-))]dM_{m}(t)\bigg \}\\= & {} \bigg [r(1-H_{i}(t))\Phi _{i}(t,{\textbf {H}}(t))+\nu _{i}(1-H_{i}(t))\bigg ]dt\\{} & {} +\,(1-H_{i}(t-))\bigg \{[\Phi _{i}(t,{\textbf {H}}^{i}(t-))-\Phi _{i}(t,{\textbf {H}}(t-))]dM_{i}(t)\\{} & {} +\,[\Phi _{i}(t,{\textbf {H}}^{m}(t-))-\Phi _{i}(t,{\textbf {H}}(t-))]dM_{m}(t)\bigg \}. \end{aligned}$$

Then, we have

$$\begin{aligned} dC_{i}(t)= & {} (1-H_{i}(t-))d\Phi _{i}(t,{\textbf {H}}(t))-\Phi _{i}(t,{\textbf {H}}(t-))dH_{i}(t)\\{} & {} -\,[\Phi _{i}(t,{\textbf {H}}^{i}(t-))-\Phi _{i}(t,{\textbf {H}}(t-))]dH_{i}(t)\\= & {} (1-H_{i}(t))(r\Phi _{i}(t,{\textbf {H}}(t))+\nu _{i}dt-\Phi _{i}(t,{\textbf {H}}(t))dH_{i}(t)\\{} & {} +\,(1-H_{i}(t-))\bigg \{[\Phi _{i}(t,{\textbf {H}}^{i}(t-))-\Phi _{i}(t,{\textbf {H}}(t-))]dM_{i}(t)\\{} & {} +\,[\Phi _{i}(t,{\textbf {H}}^{m}(t-))-\Phi _{i}(t,{\textbf {H}}(t-))]dM_{m}(t)\bigg \}-[\Phi _{i}(t,{\textbf {H}}^{i}(t-))\\{} & {} -\,\Phi _{i}(t,{\textbf {H}}(t-))]dH_{i}(t), \end{aligned}$$

Using \(\Phi _{i}(t,{\textbf {z}}^{i})=L_{i}\), we obtain

$$\begin{aligned} dC_{i}(t)= & {} (1-H_{i}(t))[r\Phi _{i}(t,{\textbf {H}}(t))+\upsilon _{i}-h^{Q}_{i}({\textbf {H}}(t))L_{i}]dt-\Phi _{i}(t,{\textbf {H}}(t-))dM_{i}(t)\\{} & {} +\,(1-H_{i}(t-))[\Phi _{i}(t,{\textbf {H}}^{m}(t-))-\Phi _{i}(t,{\textbf {H}}(t-))]dM_{m}(t), \end{aligned}$$

with \(C_{i}(0)=(1-H_{i}(0))\Phi _{i}(0,{\textbf {H}}(0))\in [-\upsilon _{i},L_{i}].\) \(\square \)

Proof of Lemma 3.1

Proof

It is that

$$\begin{aligned}&\frac{\partial W_{i}(t, q_{i}(t))}{\partial q_{i}(t)}\\&\quad =\alpha _{i} e^{r(T-t)}\bigg \{\big [\lambda _{i}\phi _{i3}(t,q_{i}(t))+\lambda \phi _{i5}(t,q_{i}(t))\big ]\cdot M'_{Y_{i}}(\alpha _{i} q_{i}(t)e^{r(T-t)})\\&\qquad -(1+\eta _{i})(\lambda _{i}+\lambda )\mu _{i}\bigg \}\\&\quad =\alpha _{i} e^{r(T-t)}\bigg \{\big [\lambda _{i}\phi _{i3}(t,q_{i}(t))+\lambda \phi _{i5}(t,q_{i}(t))\big ]E[Y_{i}e^{\alpha _{i} q_{i}(t)Y_{i}e^{r(T-t)}}]\\&\qquad -(1+\eta _{i})(\lambda _{i}+\lambda )\mu _{i}\bigg \}, \end{aligned}$$

and

$$\begin{aligned}{} & {} \frac{\partial ^{2}W_{i}(t, q_{i}(t))}{\partial q_{i}^{2}(t)}\\{} & {} \quad =\alpha _{i} e^{r(T-t)}\lambda _{i}\bigg \{\beta _{i3}e^{r(T-t)}\exp \left\{ \frac{\beta _{i3}}{\alpha _{i}}(E[e^{\alpha _{i} q_{i}(t)Y_{i}e^{r(T-t)}}]-1)\right\} E[Y_{i}e^{\alpha _{i} q_{i}(t)Y_{i}e^{r(T-t)}}]^{2}\\{} & {} \qquad +\,\alpha _{i} e^{r(T-t)}\exp \left\{ \frac{\beta _{i3}}{\alpha _{i}}(E[e^{\alpha _{i} q_{i}(t)Y_{i}e^{r(T-t)}}]-1)\right\} E[Y_{i}^{2}e^{\alpha _{i} q_{i}(t)Y_{i}e^{r(T-t)}}] \bigg \}\\{} & {} \qquad +\,\alpha _{i} e^{r(T-t)}\lambda \bigg \{\beta _{i5}e^{r(T-t)}\exp \left\{ \frac{\beta _{i5}}{\alpha _{i}}(E[e^{\alpha _{i} q_{i}(t)Y_{i}e^{r(T-t)}}]-1)\right\} E[Y_{i}e^{\alpha _{i} q_{i}(t)Y_{i}e^{r(T-t)}}]^{2}\\{} & {} \qquad +\,\alpha _{i} e^{r(T-t)}\exp \left\{ \frac{\beta _{i5}}{\alpha _{i}}(E[e^{\alpha _{i} q_{i}(t)Y_{i}e^{r(T-t)}}]-1)\right\} E[Y_{i}^{2}e^{\alpha _{i} q_{i}(t)Y_{i}e^{r(T-t)}}] \bigg \}>0, \end{aligned}$$

then, we have \(\frac{\partial W_{i}(t, q_{i}(t))}{\partial q_{i}(t)}\) is increasing in \(q_{i}(t)\). On the other hand, \(\lim \limits _{q_{i}(t)\rightarrow \infty }\frac{\partial W_{i}(t, q_{i}(t))}{\partial q_{i}(t)}|_{q_{i}(t)=\infty }>0\) and \(\lim \limits _{q_{i}(t)\rightarrow 0}\frac{\partial W_{i}(t, q_{i}(t))}{\partial q_{i}(t)}|_{q_{i}(t)=0}=-(\lambda _{i}+\lambda )\alpha _{i} e^{r(T-t)}\eta _{i}\mu _{i}<0\). According the continuously of \(q_{i}(t)\in [0,\infty ]\) over time, there exists a solution \(q_{i}^{*}(t)\in [0,T]\) such that \(\frac{\partial W_{i}(t, q_{i}(t))}{\partial q_{i}(t)}|_{q_{i}(t)=q_{i}^{*}(t)}=0\), that is \(W_{i}(t, q_{i}(t))\) has a minimizer \(q_{i}^{*}(t)\). \(\square \)

Proof of Lemma 3.4.

Proof

Since \(\tilde{W}'(\phi _{i4})=\frac{\alpha _{i}}{\beta _{i4}}(\ln \phi _{i4}+1)+1\), it is easy to verify \(\tilde{W}'(\phi _{i4})\) is a decreasing function on \((0, e^{-\frac{\alpha _{i}+\beta _{i4}}{\alpha _{i}}})\) and increases on \((e^{-\frac{\alpha _{i}+\beta _{i4}}{\alpha _{i}}}, +\infty )\). Moreover, \(\lim \limits _{\phi _{i4}\rightarrow 0^{+}}\tilde{W}(\phi _{i4})=-\frac{1}{1+u_{i}}<0\), \(\lim \limits _{\phi _{i4}\rightarrow \infty }\tilde{W}(\phi _{i4})=\infty \). Therefore the function \(\tilde{W}(\phi _{i4})=0\) admits a unique positive root \(\phi _{i4}>0\). \(\square \)

Proof of Lemma 3.6.

Proof

Finding the first and second order partial derivatives of \(\hat{p}_{i}\) with respect to \(\pi _{i2}(t)\) as follows:

$$\begin{aligned}{} & {} \frac{\partial \hat{p}(\pi _{i2})}{\partial \pi _{i2}}=\alpha _{i} e^{r(T-t)}\frac{g_{i2}(t)}{g_{i3}(t)}\bigg [\phi ^{*}_{i4}(t)h_{i}^{P}[\Phi _{i}(t,{\textbf {0}})-L_{i}]\exp \{\alpha _{i}[\Phi _{i}(t,{\textbf {0}})-L_{i}]\pi _{i2}(t)e^{r(T-t)}\}\nonumber \\{} & {} \quad -\,\phi ^{*}_{m4}(t)h_{m}^{P}[\Phi _{i}(t,{\textbf {z}}^{m})-\Phi _{i}(t,{\textbf {0}})]\exp \{-\alpha _{i}[\Phi _{i}(t,{\textbf {z}}^{m})-\Phi _{i}(t,{\textbf {0}})]\pi _{i2}(t)e^{r(T-t)}\}\bigg ]\nonumber \\{} & {} \quad -\,\alpha _{i} e^{r(T-t)}\bigg [[\Phi _{i}(t,{\textbf {0}})-L_{i}]\frac{h_{i}^{P}}{1+u_{i}}-[\Phi _{i}(t,{\textbf {z}}^{m})-\Phi _{i}(t,{\textbf {0}})]\frac{h_{m}^{P}}{1+u_{m}}\bigg ], \end{aligned}$$
(6.1)

and

$$\begin{aligned}{} & {} \frac{\partial ^{2}\hat{p}(\pi _{i2})}{\partial \pi _{i2}\partial \pi _{i2}}=\alpha ^{2}_{i} e^{2r(T-t)}\frac{g_{i2}(t)}{g_{i3}(t)}\bigg [\phi ^{*}_{i4}(t)h_{i}^{P}[\Phi _{i}(t,{\textbf {0}})-L_{i}]^{2}\exp \{\alpha _{i}[\Phi _{i}(t,{\textbf {0}})-L_{i}]\pi _{i2}(t)e^{r(T-t)}\}\nonumber \\{} & {} \qquad +\,\phi ^{*}_{m4}(t)h_{m}^{P}[\Phi _{i}(t,{\textbf {z}}^{m})-\Phi _{i}(t,{\textbf {0}})]^{2}\exp \{-\alpha _{i}[\Phi _{i}(t,{\textbf {z}}^{m})-\Phi _{i}(t,{\textbf {0}})]\pi _{i2}(t)e^{r(T-t)}\}\bigg ]\nonumber \\{} & {} \quad >0, \end{aligned}$$
(6.2)

then, we have \(\lim \limits _{\pi _{i2}(t)\rightarrow \infty }\frac{\partial \hat{p}_{i}(t, \pi _{i2}(t))}{\partial \pi _{i2}(t)}|_{\pi _{i2}(t)=\infty }>0\) and \(\lim \limits _{\pi _{i2}(t)\rightarrow 0}\frac{\partial \hat{p}_{i}(t, \pi _{i2}(t))}{\partial \pi _{i2}(t)}|_{\pi _{i2}(t)=0}<0\). we know \(\frac{\partial \hat{p}_{i}(t, \pi _{i2}(t))}{\partial \pi _{i2}}\) is increasing in \(\pi _{i2}(t)\), then there exists a unique solution \(\pi _{i2}^{*}(t)\in [0,T]\) such that \(\frac{\partial \hat{p}_{i2}(t, \pi _{i2}(t))}{\partial \pi _{i2}(t)}|_{\pi _{i2}(t)=\pi _{i2}^{*}(t)}=0\), that is \(\hat{p}_{i}(t, \pi _{i2}(t))\) has a unique minimizer \(\pi _{i2}^{*}(t)\). \(\square \)

The proof of Lemma 3.8.

Proof

It is that

$$\begin{aligned} \frac{\partial W_{i}(t, q_{i}(t))}{\partial q_{i}(t)}&=\alpha _{i} e^{r(T-t)}\bigg \{(\lambda _{i}+\lambda )\cdot M'_{Y_{i}}(\alpha _{i} q_{i}(t)e^{r(T-t)})-(1+\eta _{i})(\lambda _{i}+\lambda )\mu _{i}\bigg \}\\&=\alpha _{i} e^{r(T-t)}(\lambda _{i}+\lambda )\bigg \{E[Y_{i}e^{\alpha _{i} q_{i}(t)Y_{i}e^{r(T-t)}}] -(1+\eta _{i})\mu _{i}\bigg \}, \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^{2}W_{i}(t, q_{i}(t))}{\partial q_{i}^{2}(t)}= & {} \alpha _{i} e^{r(T-t)}(\lambda _{i}+\lambda )\bigg \{\alpha _{i} e^{r(T-t)}E[Y_{i}^{2}e^{\alpha _{i} q_{i}(t)Y_{i}e^{r(T-t)}}] \bigg \}>0, \end{aligned}$$

then, we have \(\lim \limits _{q_{i}(t)\rightarrow 0}\frac{\partial ^{2} W_{i}(t, q_{i}(t))}{\partial q^{2}_{i}(t)}|_{q_{i}(t)=0}>0\) and \(\lim \limits _{q_{i}(t)\rightarrow 0}\frac{\partial W_{i}(t, q_{i}(t))}{\partial q_{i}(t)}|_{q_{i}(t)=0}=-(\lambda _{i}+\lambda )\alpha _{i} e^{r(T-t)}\eta _{i}\mu _{i}<0\). we know \(\frac{\partial W_{i}(t, q_{i}(t))}{\partial q}\) is increasing in \(q_{i}(t)\), then there exists a unique solution \(q_{i}^{*}(t)\in [0,T]\) such that \(\frac{\partial W_{i}(t, q_{i}(t))}{\partial q_{i}(t)}|_{q_{i}(t)=q_{i}^{*}(t)}=0\), that is \(W_{i}(t, q_{i}(t))\) has a unique minimizer \(q_{i}^{*}(t)\). \(\square \)

The proof of Lemma 4.2.

Proof

Putting \(\phi _{i}^{*}\) and \(\phi _{m}^{*}\) into (4.2). Because that \(\phi _{i}^{*}\) and \(\phi _{m}^{*}\) are the deterministic and bound functions on [0, T], we have \(I(T)<\infty .\) \(\square \)

The proof of Lemma 4.3.

Proof

Substituting \((\pi ^{*},\phi ^{*})\) into (2.16), we have the wealth process under \((\pi ^{*},\phi ^{*})\)

$$\begin{aligned} \hat{X}_{i}^{\pi _{i}^{*},\pi _{m}^{*}}(t)= & {} e^{rt}\hat{X}_{i}^{\pi _{i}^{*}}(0)+\int _{0}^{t}e^{-r(u-t)}\bigg [(a_{i}-r)\pi ^{*}_{i1}(t)-k_{i}(a_{m}-r)\pi ^{*}_{m1}(t)\nonumber \\{} & {} \quad +\,\pi ^{*}_{i2}(u)\big [[\Phi _{i}(u,0,0)-L_{i}]\frac{h_{i}^{P}}{1+u_{i}}-[\Phi _{i}(u,{\textbf {z}}^{m})-\Phi _{i}(u,0,0)]\frac{h_{m}^{P}}{1+u_{m}}\big ]\nonumber \\{} & {} \quad -\,k_{i}\pi ^{*}_{m2}(u)\big [[\Phi _{m}(u,0,0)-L_{m}]\frac{h_{m}^{P}}{1+u_{m}}-[\Phi _{m}(u,{\textbf {z}}^{i})-\Phi _{m}(u,0,0]\frac{h_{i}^{P}}{1+u_{i}}\big ]+\hat{\theta }_{i}\nonumber \\{} & {} \quad +\,[(\lambda _{i}+\lambda )\mu _{i}\eta _{i}q^{*}_{i}(u)-k_{i}(\lambda _{m}+\lambda )\mu _{m}\eta _{m}q^{*}_{m}(u)]-[\sigma _{0i}\phi ^{*}_{i2}(u)-k_{i}\sigma _{0m}\phi ^{*}_{m2}(u)]\nonumber \\{} & {} \quad -\,b_{i}\phi _{i6}(u)\pi ^{*}_{i1}(u)+k_{i}b_{m}\phi ^{*}_{m6}(u)\pi ^{*}_{m1}(u)-\sigma _{i}\phi _{i1}(u)\pi ^{*}_{i1}(u)+k_{i}\sigma _{m}\phi ^{*}_{m1}(t)\pi ^{*}_{m1}(u)\bigg ]du \nonumber \\{} & {} \quad -\,\int _{0}^{t}e^{-r(u-t)}\bigg [\pi ^{*}_{i2}(u)[\Phi _{i}(u,{\textbf {H}}(u))-L_{i}]-k_{i}\pi ^{*}_{m2}(u)[\Phi _{m}(u,{\textbf {H}}^{i}(u-))\nonumber \\{} & {} \quad -\,\Phi _{m}(u,{\textbf {H}}(u-))]\bigg ]dH_{i}(u)+\int _{0}^{t}e^{-r(u-t)}\bigg [k_{i}\pi ^{*}_{m2}(u)[\Phi _{m}(u,{\textbf {H}}(u))-L_{m}]\nonumber \\{} & {} \quad +\,\pi ^{*}_{i2}(u)[\Phi _{i}(u,{\textbf {H}}^{m}(u-))-\Phi _{i}(u,{\textbf {H}}(u-))]\bigg ]dH_{m}(u)\nonumber \\{} & {} \quad +\,\int _{0}^{t}e^{-r(u-t)}(\pi ^{*}_{i1}(u)\sigma _{i} dW_{i}^{P^{\phi }}(u)-k_{i}\pi ^{*}_{m1}(u)\sigma _{m} dW_{m}^{P^{\phi }}(u))+\int _{0}^{t}e^{-r(u-t)}(\pi ^{*}_{i1}(u)b_{i}\nonumber \\{} & {} \quad -\,k_{i}\pi ^{*}_{m1}(u)b_{m})dB^{P^{\phi }}(t)+\int _{0}^{t}e^{-r(u-t)}(\sigma _{0i}dB^{P^{\phi }}_{i}(u)-k_{i}\sigma _{0m}dB^{P^{\phi }}_{m}(t))\nonumber \\{} & {} \quad -\,\int _{0}^{t}e^{-r(u-t)}\int _{R^{+}}(q^{*}_{i}(u)y_{i}\tilde{N}_{i}(du,dy_{i})-k_{i}q^{*}_{m}(u)y_{m}\tilde{N}_{m}(du,dy_{m}))\nonumber \\{} & {} \quad -\,\int _{0}^{t}e^{-r(u-t)}\int _{D}(q^{*}_{i}(u)y_{i}\tilde{N}(du,dy_{i},dy_{m})-k_{i}q^{*}_{m}(t)y_{m}\tilde{N}(du,dy_{i},dy_{m})). \end{aligned}$$
(6.3)

For the candidate value function (2.20), we get

$$\begin{aligned} |\hat{V}_{i}(t,\hat{X}^{\pi _{i}^{*}}(t),{\textbf {H}}(t))|^{4}= & {} |(1-H_{1}(t))(1-H_{2}(t))V_{i}(t,\hat{x}_{i},0,0)\nonumber \\{} & {} +\,H_{2}(t)(1-H_{1}(t)) V_{i}(t,\hat{x}_{i},0,1)\nonumber \\{} & {} +\,H_{1}(t)(1-H_{2}(t)) V_{i}(t,\hat{x}_{i},1,0)+H_{1}(t)H_{2}(t) V_{i}(t,\hat{x}_{i},1,1)|^{4}\nonumber \\\le & {} 4|\hat{V}_{i}(t,\hat{X}^{\pi _{i}^{*}}(t),0,0)|^{4}+4|\hat{V}_{i}(t,\hat{X}^{\pi _{i}^{*}}(t),0,1)|^{4}\nonumber \\{} & {} +\,4|\hat{V}_{i}(t,\hat{X}^{\pi _{i}^{*}}(t),1,0)|^{4}+4|\hat{V}_{i}(t,\hat{X}^{\pi _{i}^{*}}(t),1,1)|^{4}. \end{aligned}$$
(6.4)

At first, we prove \(E^{P^{\phi _{i}*}}(\sup _{t\in [0,T]}|\hat{V}_{i}(t,\hat{X}^{\pi _{i}^{*}}(t),0,0)|^{4})<\infty \). \(\pi _{i}^{*},\phi _{i}^{*}\) and \(g_{i3}(t)\) are deterministic continuous functions, then are bounded on [0, T]. Substituting (6.3) into (3.14), there are three constants \(0<K_{1}<K_{2}<K_{3}\) such that

$$\begin{aligned}{} & {} |\hat{V}_{i}(t,\hat{X}^{\pi ^{*}}_{i}(t),0,0)|^{4}=\frac{g_{i3}^{4}(t)}{\alpha _{i}^{4}}\exp \bigg \{-4\alpha _{i}\bigg [e^{rt}\hat{X}^{\pi ^{*}}_{i}(0)+\int _{0}^{t}e^{-r(u-T)}\big [(a_{i}-r)\pi ^{*}_{i1}(t)\nonumber \\{} & {} \quad -\,k_{i}(a_{m}-r)\pi ^{*}_{m1}(t)+\pi ^{*}_{i2}(u)\bigg [[\Phi _{i}(u,0,0)-L_{i}]\frac{h_{i}^{P}}{1+u_{i}}\nonumber \\{} & {} \quad -\,[\Phi _{i}(u,{\textbf {z}}^{m})-\Phi _{i}(u,0,0)]\frac{h_{m}^{P}}{1+u_{m}}\bigg ]\nonumber \\{} & {} \quad -\,k_{i}\pi ^{*}_{m2}(u)\big [[\Phi _{m}(u,0,0)-L_{m}]\frac{h_{m}^{P}}{1+u_{m}}-[\Phi _{m}(u,{\textbf {z}}^{i})-\Phi _{m}(u,0,0]\frac{h_{i}^{P}}{1+u_{i}}\big ]+\hat{\theta }_{i}\nonumber \\{} & {} \quad +\,[(\lambda _{i}+\lambda )\mu _{i}\eta _{i}q^{*}_{i}(u)-k_{i}(\lambda _{m}+\lambda )\mu _{m}\eta _{m}q^{*}_{m}(u)]-b_{i}\phi _{i6}(u)\pi ^{*}_{i1}(u)+k_{i}b_{m}\phi ^{*}_{m6}(u)\pi ^{*}_{m1}(u) \nonumber \\{} & {} \quad -\,\sigma _{i}\phi _{i1}(u)\pi ^{*}_{i1}(u)+k_{i}\sigma _{m}\phi ^{*}_{m1}(t)\pi ^{*}_{m1}(u)-[\sigma _{0i}\phi ^{*}_{i2}(u)-k_{i}\sigma _{0m}\phi ^{*}_{m2}(u)]\big ]du\nonumber \\{} & {} \quad +\,\int _{0}^{t}e^{-r(u-T)}\pi ^{*}_{i1}(u)\sigma _{i} dW_{i}^{P^{\phi }}(u)-k_{i}\int _{0}^{t}e^{-r(u-T)}\pi ^{*}_{m1}(u)\sigma _{m} dW_{m}^{P^{\phi }}(u))dW_{m}^{P^{\phi }}(u) \nonumber \\{} & {} \quad +\,\int _{0}^{t}e^{-r(u-T)}(b_{i}\pi ^{*}_{i1}(u)-k_{i}b_{m}\pi ^{*}_{m1}(u)dB^{P^{\phi }}(u)\nonumber \\{} & {} \quad +\,\int _{0}^{t}e^{-r(u-T)}\sigma _{0i}dB^{P^{\phi _{i}}}_{i}(u)-k_{i}\int _{0}^{t}e^{-r(u-T)}\sigma _{0m}dB^{P^{\phi _{m}}}_{m}(u)\nonumber \\{} & {} \quad -\,\int _{0}^{t}e^{-r(u-t)}\bigg [\pi ^{*}_{i2}(u)[\Phi _{i}(u,{\textbf {H}}(u))-L_{i}]-k_{i}\pi ^{*}_{m2}(u)[\Phi _{m}(u,{\textbf {H}}^{i}(u-))\nonumber \\{} & {} \quad -\,\Phi _{m}(u,{\textbf {H}}(u-))]\bigg ]dH_{i}(u)+\int _{0}^{t}e^{-r(u-t)}\bigg [k_{i}\pi ^{*}_{m2}(u)[\Phi _{m}(u,{\textbf {H}}(u))-L_{m}]\nonumber \\{} & {} \quad +\,\pi ^{*}_{i2}(u)[\Phi _{i}(u,{\textbf {H}}^{m}(u-))-\Phi _{i}(u,{\textbf {H}}(u-))]\bigg ]dH_{m}(u)\nonumber \\{} & {} \quad -\,\int _{0}^{t}e^{-r(u-T)}\int _{R^{+}}q^{*}_{i}(u)y_{i}\tilde{N}_{i}(du,dy_{i})+k_{i}\int _{0}^{t}e^{-r(u-T)}\int _{R^{+}}q^{*}_{m}(u)y_{m}\tilde{N}_{m}(du,dy_{m})\nonumber \\{} & {} \quad -\,\int _{0}^{t}e^{-r(u-T)}\int _{D}q^{*}_{i}(u)y_{i}\tilde{N}(du,dy_{i},dy_{m})+k_{i}\int _{0}^{t}e^{-r(u-T)}\nonumber \\{} & {} \quad \int _{D}q^{*}_{m}(u)y_{m}\tilde{N}(du,dy_{i},dy_{m})\bigg ]\bigg \}\nonumber \\{} & {} \le K_{1} \exp \bigg \{-4\alpha _{i}\bigg [\int _{0}^{t}e^{-r(u-T)}\pi ^{*}_{i1}(u)\sigma _{i} dW_{i}^{P^{\phi }}(u)-k_{i}\int _{0}^{t}e^{-r(u-T)}\pi ^{*}_{m1}(u)\sigma _{m} dW_{m}^{P^{\phi }}(u)\nonumber \\{} & {} \quad +\,\int _{0}^{t}e^{-r(u-T)}(b_{i}\pi ^{*}_{i1}(u)-k_{i}b_{m}\pi ^{*}_{m1}(u))dB^{P^{\phi }}(u)+\int _{0}^{t}e^{-r(u-T)}\sigma _{0i}dB^{P^{\phi }}_{i}(u)\nonumber \\{} & {} \quad -\,k_{i}\int _{0}^{t}e^{-r(u-T)}\sigma _{0m}dB^{P^{\phi }}_{m}(u)-\int _{0}^{t}e^{-r(u-T)}\int _{R^{+}}q^{*}_{i}(u)y_{i}\tilde{N}_{i}(du,dy_{i})\nonumber \\{} & {} \quad +\,k_{i}\int _{0}^{t}e^{-r(u-T)}\int _{R^{+}}q^{*}_{m}(u)y_{m}\tilde{N}_{m}(du,dy_{m})\nonumber \\{} & {} \quad -\,\int _{0}^{t}e^{-r(u-T)}\int _{D}\big (q^{*}_{i}(u)y_{i}-k_{i}q^{*}_{m}(u)y_{m}\big )\tilde{N}(du,dy_{i},dy_{m})\bigg ]\bigg \}\nonumber \\{} & {} \le K_{2} \exp \bigg \{32\alpha ^{2}_{i}\int _{0}^{t}e^{-2r(u-T)}\big (-2\pi ^{*2}_{i1}(u)\sigma _{i}^{2}+2k^{2}_{i}\pi ^{*2}_{m1}(u)\sigma _{m}^{2}+(b_{i}\pi ^{*}_{i1}(u)\nonumber \\{} & {} \quad -\,k_{i}b_{m}\pi ^{*}_{m1}(u))^{2}\nonumber \\{} & {} \quad +\,2\sigma _{0i}^{2}-2k^{2}_{i}\sigma _{0m}^{2}\big ) du+64\alpha ^{2}_{i}\int _{0}^{t}e^{-2r(u-T)}\pi ^{*2}_{i1}(u)\sigma _{i}^{2} du\nonumber \\{} & {} \quad -\,4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\pi ^{*}_{i1}(u)\sigma _{i} dW_{i}^{P^{\phi }}(u)\nonumber \\{} & {} \quad -\,64k^{2}_{i}\alpha ^{2}_{i}\int _{0}^{t}e^{-2r(u-T)}\pi ^{*2}_{m1}(u)\sigma _{m}^{2} du+4k_{i}\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\pi ^{*}_{m1}(u)\sigma _{m} dW_{m}^{P^{\phi }}(u)\nonumber \\{} & {} \quad -\,32\alpha _{i}^{2}\int _{0}^{t}e^{-2r(u-T)}(b_{i}\pi ^{*}_{i1}(u)-k_{i}b_{m}\pi ^{*}_{m1}(u))^{2} du\nonumber \\{} & {} \quad +\,4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}(b_{i}\pi ^{*}_{i1}(u)-k_{i}b_{m}\pi ^{*}_{m1}(u))dB^{P^{\phi }}(u)\nonumber \\{} & {} \quad -\,64\alpha _{i}^{2}\int _{0}^{t}e^{-2r(u-T)}\sigma _{0i}^{2} du+4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\sigma _{0i}dB_{i}^{P^{\phi }}(u)\nonumber \\{} & {} \quad +\,64k^{2}_{i}\alpha _{i}^{2}\int _{0}^{t}e^{-2r(u-T)}\sigma _{0m}^{2} du-4k_{i}\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\sigma _{0m}dB_{m}^{P^{\phi _{m}}}(u)\nonumber \\{} & {} \quad +\,4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\int _{R^{+}}q^{*}_{i}(u)y_{i}\tilde{N}_{i}(du,dy_{i})-4\alpha _{i}k_{i}\int _{0}^{t}e^{-r(u-T)}\nonumber \\{} & {} \quad \int _{R^{+}}q^{*}_{m}(u)y_{m}\tilde{N}_{m}(du,dy_{m})\nonumber \\{} & {} \quad +\,4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\int _{D}\big (q^{*}_{i}(u)y_{i}-k_{i}q^{*}_{m}(u)y_{m}\big )\tilde{N}(du,dy_{i},dy_{m})\bigg \}\nonumber \\{} & {} \le K_{3} \exp \bigg \{64\alpha ^{2}_{i}\int _{0}^{t}e^{-2r(u-T)}\pi ^{*2}_{i1}(u)\sigma _{i}^{2} du-4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\pi ^{*}_{i1}(u)\sigma _{i} dW_{i}^{P^{\phi }}(u)\nonumber \\{} & {} \quad -\,64k^{2}_{i}\alpha ^{2}_{i}\int _{0}^{t}e^{-2r(u-T)}\pi ^{*2}_{m1}(u)\sigma _{m}^{2} du+4k_{i}\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\pi ^{*}_{m1}(u)\sigma _{m} dW_{m}^{P^{\phi }}(u)\nonumber \\{} & {} \quad -\,32\alpha _{i}^{2}\int _{0}^{t}e^{-2r(u-T)}(b_{i}\pi ^{*}_{i1}(u)-k_{i}b_{m}\pi ^{*}_{m1}(u))^{2} du\nonumber \\{} & {} \quad +\,4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}(b_{i}\pi ^{*}_{i1}(u)-k_{i}b_{m}\pi ^{*}_{m1}(u))dB^{P^{\phi }}(u)\nonumber \\{} & {} \quad -\,64\alpha _{i}^{2}\int _{0}^{t}e^{-2r(u-T)}\sigma _{0i}^{2} du+4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\sigma _{0i}dB_{i}^{P^{\phi }}(u)\nonumber \\{} & {} \quad +\,64k^{2}_{i}\alpha _{i}^{2}\int _{0}^{t}e^{-2r(u-T)}\sigma _{0m}^{2} du-4k_{i}\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\sigma _{0m}dB_{m}^{P^{\phi _{m}}}(u)\nonumber \\{} & {} \quad +\,4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\int _{R^{+}}q^{*}_{i}(u)y_{i}\tilde{N}_{i}(du,dy_{i})-4\alpha _{i}k_{i}\int _{0}^{t}e^{-r(u-T)}\nonumber \\{} & {} \quad \int _{R^{+}}q^{*}_{m}(u)y_{m}\tilde{N}_{m}(du,dy_{m})\nonumber \\{} & {} \quad +\,4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\int _{D}\big (q^{*}_{i}(u)y_{i}-k_{i}q^{*}_{m}(u)y_{m}\big )\tilde{N}(du,dy_{i},dy_{m})\bigg \}\nonumber \\{} & {} \triangleq K_{3}\exp \{D_{1}(t)+D_{2}(t)+D_{3}(t)+D_{4}(t)+D_{5}(t)+D_{6}(t)\}, \end{aligned}$$
(6.5)

where

$$\begin{aligned} D_{1}(t)= & {} 64\alpha ^{2}_{i}\int _{0}^{t}e^{-2r(u-T)}\pi ^{*2}_{i1}(u)\sigma _{i}^{2} du-4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\pi ^{*}_{i1}(u)\sigma _{i} dW_{i}^{P^{\phi }}(u),\\ D_{2}(t)= & {} -\,64k^{2}_{i}\alpha ^{2}_{i}\int _{0}^{t}e^{-2r(u-T)}\pi ^{*2}_{m1}(u)\sigma _{m}^{2} du+4k_{i}\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\pi ^{*}_{m1}(u)\sigma _{m} dW_{m}^{P^{\phi }}(u),\\ D_{3}(t)= & {} -\,32\alpha _{i}^{2}\int _{0}^{t}e^{-2r(u-T)}(b_{i}\pi ^{*}_{i1}(u)-k_{i}b_{m}\pi ^{*}_{m1}(u))^{2} du\\{} & {} +\,4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}(b_{i}\pi ^{*}_{i1}(u)-k_{i}b_{m}\pi ^{*}_{m1}(u))dB^{P^{\phi }}(u),\\ D_{4}(t)= & {} -\,64\alpha _{i}^{2}\int _{0}^{t}e^{-2r(u-T)}\sigma _{0i}^{2} du+4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\sigma _{0i}dB_{i}^{P^{\phi }}(u),\\ D_{5}(t)= & {} 64k^{2}_{i}\alpha _{i}^{2}\int _{0}^{t}e^{-2r(u-T)}\sigma _{0m}^{2} du-4k_{i}\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\sigma _{0m}dB_{m}^{P^{\phi _{m}}}(u),\\ D_{6}(t)= & {} 4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\int _{R^{+}}q^{*}_{i}(u)y_{i}\tilde{N}_{i}(du,dy_{i})-4\alpha _{i}k_{i}\\{} & {} \int _{0}^{t}e^{-r(u-T)}\int _{R^{+}}q^{*}_{m}(u)y_{m}\tilde{N}_{m}(du,dy_{m})\\{} & {} +\,4\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\int _{D}\big (q^{*}_{i}(u)y_{i}-k_{i}q^{*}_{m}(u)y_{m}\big )\tilde{N}(du,dy_{i},dy_{m}), \end{aligned}$$

and the last unequal sign is due to the deterministic continuous functions \(\pi _{i}^{*},\phi _{i}^{*}\) are bounded on [0, T].

Firstly, it easy to check that

$$\begin{aligned}{} & {} E^{P^{\phi _{i}*}}\left( \exp \{4D_{6}(t)\}\right) =16\alpha _{i}(\int _{0}^{t}e^{-r(u-T)}\int _{R^{+}}q^{*}_{i}(u)y_{i}\tilde{N}_{i}(du,dy_{i})\nonumber \\{} & {} \quad -\,16\alpha _{i}k_{i}\int _{0}^{t}e^{-r(u-T)}\int _{R^{+}}q^{*}_{m}(u)y_{m}\tilde{N}_{m}(du,dy_{m})\nonumber \\{} & {} \quad +\,16\alpha _{i}\int _{0}^{t}e^{-r(u-T)}\int _{D}\big (q^{*}_{i}(u)y_{i}-k_{i}q^{*}_{m}(u)y_{m}\big )\tilde{N}(du,dy_{i},dy_{m})<\infty .~~~~~~~ \end{aligned}$$
(6.6)

Applying Lemma 4.3 in Zeng and Taksar [47], we know that \(\exp \{8D_{1}(t)\}\), \(\exp \{8D_{2}(t)\}\), \(\exp \{4D_{3}(t)\}\), \(\exp \{8D_{4}(t)\}\), \(\exp \{8D_{5}(t)\}\) and \(\exp \{4D_{6}(t)\}\) are martingales, then

$$\begin{aligned} E^{P^{\phi _{i}*}}(\exp \{4D_{3}(t)\})<\infty ~~and~~E^{P^{\phi _{i}*}}(\exp \{8D_{i}(t)\})<\infty , i=1, 2, 4, 5. \end{aligned}$$
(6.7)

Applying (6.6), (6.7), according to Cauchy-Schwarz inequality, we have

$$\begin{aligned}{} & {} E^{P^{\phi _{i}*}}(|\hat{V}_{i}(t,\hat{X}^{\pi ^{*}}_{i}(t),0)|^{4})\nonumber \\{} & {} \quad \le K_{3}E^{P^{\phi _{i}*}}[\exp \{D_{1}(t)+D_{2}(t)+D_{3}(t)+D_{4}(t)+D_{5}(t)+D_{6}(t)\}]\nonumber \\{} & {} \quad \le K_{3}E^{P^{\phi _{i}*}}[\exp \{2D_{1}(t)+2D_{2}(t)+2D_{3}(t)\}]^{\frac{1}{2}}\nonumber \\{} & {} \qquad \times \, E^{P^{\phi _{i}*}}[\exp \{2D_{4}(t)+2D_{5}(t)+2D_{6}(t)\}]^{\frac{1}{2}}\nonumber \\{} & {} \quad \le K_{3}E^{P^{\phi _{i}*}}[\exp \{4D_{1}(t)+4D_{2}(t)]^{\frac{1}{4}}\cdot E^{P^{\phi _{i}*}}[\exp \{4D_{3}(t)]^{\frac{1}{4}}\nonumber \\{} & {} \qquad \times \, E^{P^{\phi _{i}*}}[\exp \{4D_{4}(t)+4D_{5}(t)\}])^{\frac{1}{4}}\cdot E^{P^{\phi _{i}*}}[\exp \{4D_{6}(t)]^{\frac{1}{4}}\nonumber \\{} & {} \quad \le K_{3}(E^{P^{\phi _{i}*}}[\exp \{8D_{1}(t)\}]^{\frac{1}{8}}E^{P^{\phi _{i}*}}[\exp \{8D_{2}(t)\}]^{\frac{1}{8}}E^{P^{\phi _{i}*}}[\exp \{4D_{3}(t)\}]^{\frac{1}{4}}\nonumber \\{} & {} \qquad \times \, E^{P^{\phi _{i}*}}[\exp \{8D_{4}(t)\}]^{\frac{1}{8}}E^{P^{\phi _{i}*}}[\exp \{8D_{5}(t)\}]^{\frac{1}{8}}E^{P^{\phi _{i}*}}[\exp \{4D_{6}(t)\}])^{\frac{1}{4}}\nonumber \\{} & {} \quad \le \infty . \end{aligned}$$
(6.8)

Consequently, \(E^{P^{\phi _{i}*}}(\sup _{t\in [0,T]}|\hat{V}_{i}(t,\hat{X}_{i}^{\pi _{i}^{*}}(t),0,0)|^{4})<\infty \). Similarity, we can also prove

$$\begin{aligned}{} & {} E^{P^{\phi _{i}*}}(\sup _{t\in [0,T]}|\hat{V}_{i}(t,\hat{X}_{i}^{\pi _{i}^{*}}(t),0,1)|^{4})<\infty ,~~~E^{P^{\phi _{i}*}}(\sup _{t\in [0,T]}|\hat{V}_{i}(t,\hat{X}_{i}^{\pi _{i}^{*}}(t),1,0)|^{4})<\infty ,\\{} & {} E^{P^{\phi _{i}*}}(\sup _{t\in [0,T]}|\hat{V}_{i}(t,\hat{X}_{i}^{\pi _{i}^{*}}(t),1,1)|^{4})<\infty , \end{aligned}$$

then the formula \(E^{P^{\phi _{i}*}}(\sup _{t\in [0,T]}|\hat{V}_{i}(t,\hat{X}_{i}^{\pi ^{*}}(t),{\textbf {H}}(t))|^{4})<\infty \) holds. The first part of Lemma 4.3 is proved.

Since f(t) is obviously bounded, we get

$$\begin{aligned}{} & {} E^{P^{\phi _{i}*}}(\sup _{t\in [0,T]}|G_{i}(t, \hat{X}_{i}^{\pi _{i}^{*}}(t),\phi _{i}^{*}(t))|^{2})=E^{P^{\phi _{i}*}}(\sup _{t\in [0,T]}|f(t)|^{2}|\hat{V}_{i}(t,\hat{X}_{i}^{\pi _{i}^{*}}(t),{\textbf {z}})|^{2}) \nonumber \\{} & {} \quad \le (E^{P^{\phi _{i}*}}\sup _{t\in [0,T]}|f(t)|^{4})^{\frac{1}{2}}(E^{P^{\phi _{i}*}}\sup _{t\in [0,T]}|\hat{V}_{i}(t,\hat{X}_{i}^{\pi _{i}^{*}}(t),{\textbf {z}})|^{4})^{\frac{1}{2}}\nonumber \\{} & {} \quad <\infty . \end{aligned}$$
(6.9)

The first inequality follows from Cauchy-Schwarz inequality. The last inequality follows from (4.2). Lemma 4.3 is proved. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Huang, Y., Huang, Y. et al. Robust non-zero-sum stochastic differential game of two insurers with common shock and CDS transaction. Math Finan Econ (2024). https://doi.org/10.1007/s11579-024-00357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11579-024-00357-z

Keywords

Mathematics Subject Classification

Navigation