Skip to main content
Log in

Ionic channel blockage in stochastic Hodgkin–Huxley neuronal model driven by multiple oscillatory signals

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Ionic channel blockage and multiple oscillatory signals play an important role in the dynamical response of pulse sequences. The effects of ionic channel blockage and ionic channel noise on the discharge behaviors are studied in Hodgkin–Huxley neuronal model with multiple oscillatory signals. It is found that bifurcation points of spontaneous discharge are altered through tuning the amplitude of multiple oscillatory signals, and the discharge cycle is changed by increasing the frequency of multiple oscillatory signals. The effects of ionic channel blockage on neural discharge behaviors indicate that the neural excitability can be suppressed by the sodium channel blockage, however, the neural excitability can be reversed by the potassium channel blockage. There is an optimal blockage ratio of potassium channel at which the electrical activity is the most regular, while the order of neural spike is disrupted by the sodium channel blockage. In addition, the frequency of spike discharge is accelerated by increasing the ionic channel noise, the firing of neuron becomes more stable if the ionic channel noise is appropriately reduced. Our results might provide new insights into the effects of ionic channel blockages, multiple oscillatory signals, and ionic channel noises on neural discharge behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70(1):223–287

    CAS  Google Scholar 

  • Ge M, Jia Y, Kirunda JB, Xu Y, Shen J, Lu L, Liu Y, Pei Q, Zhan X, Yang L (2018a) Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh–Rose neural network. Neurocomputing 320:60–68

    Google Scholar 

  • Ge M, Jia Y, Xu Y, Yang L (2018b) Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn 91(1):515–523

    Google Scholar 

  • Ge M, Xu Y, Zhang Z, Peng Y, Kang W, Yang L, Jia Y (2018c) Autaptic modulation-induced neuronal electrical activities and wave propagation on network under electromagnetic induction. Eur Phys J Spec Top 227(7–9):799–809

    Google Scholar 

  • Ge M, Jia Y, Xu Y, Lu L, Wang H, Zhao Y (2019) Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network. Appl Math Comput 352:136–145

    Google Scholar 

  • Ge M, Jia Y, Lu L, Xu Y, Wang H, Zhao Y (2020a) Propagation characteristics of weak signal in feedforward Izhikevich neural networks. Nonlinear Dyn 99(3):2355–2367

    Google Scholar 

  • Ge M, Lu L, Xu Y, Mamatimin R, Pei Q, Jia Y (2020b) Vibrational mono-/bi-resonance and wave propagation in FitzHugh–Nagumo neural systems under electromagnetic induction. Chaos Soliton Fract 133:109645

    Google Scholar 

  • Ghitany ME, Mazucheli J, Menezes AFB, Alqallaf F (2019) The unit-inverse Gaussian distribution: a new alternative to two-parameter distributions on the unit interval. Commun Stat Theor Methods 48(14):3423–3438

    Google Scholar 

  • Goldman MS, Golowasch J, Marder E, Abbot LF (2001) Global structure, robustness, and modulation of neuronal models. J Hist Neurosci 21(14):5229–5238

    CAS  Google Scholar 

  • Guo D, Perc M, Zhang Y, Xu P, Yao D (2017) Frequency-difference-dependent stochastic resonance in neural systems. Phys Rev E 96(2–1):022415

    PubMed  Google Scholar 

  • Guo D, Gan J, Tan T, Tian X, Wang G, Ng KT (2018) Neonatal exposure of ketamine inhibited the induction of hippocampal long-term potentiation without impairing the spatial memory of adult rats. Cogn Neurodyn 12(4):377–383

    PubMed  PubMed Central  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature 296(5853):162–164

    CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116(4):497–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyt RC, Strieb JD (1971) A stored charge model for the sodium channel. Biophys J 11(11):868–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Hu X, Zhou Y, Dong Z, Duan S (2019) Adaptive sparse coding based on memristive neural network with applications. Cogn Neurodyn 13(5):475–488

    PubMed  Google Scholar 

  • Jin W, Wang A, Ma J, Lin Q (2019) Effects of electromagnetic induction and noise on the regulation of sleep wake cycle. Sci China Technol Sci 62:2113–2119

    Google Scholar 

  • Jung P, Shuai JW (2001) Optimal sizes of ion channel clusters. Europhys Lett 56(1):29–35

    CAS  Google Scholar 

  • Kim S, Lim W (2018) Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn Neurodyn 12:315–342

    PubMed  PubMed Central  Google Scholar 

  • Landa PS, Mc Clintock PVE (2000) Vibrational resonance. J Phys A 33(45):L433–L438

    Google Scholar 

  • Lecar H, Nossal R (1971) Theory of threshold fluctuations in nerves. Biophys J 11(12):1048–1067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin JE, Miller JP (1996) Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380(6570):165–168

    CAS  PubMed  Google Scholar 

  • Liu Y, Ma J, Xu Y, Jia Y (2019) Electrical mode transition of hybrid neuronal model induced by external stimulus and electromagnetic induction. Int J Bifurc Chaos 29(11):1950156

    Google Scholar 

  • Lu L, Jia Y, Liu W, Yang L (2017) Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity 2017:7628537

    Google Scholar 

  • Lu L, Kirunda JB, Xu Y, Kang W, Ye R, Zhan X, Jia Y (2018) Effects of temperature and electromagnetic induction on action potential of Hodgkin–Huxley model. Eur Phys J Spec Top 227(7–9):767–776

    Google Scholar 

  • Lu L, Bao C, Ge M, Xu Y, Yang L, Zhan X, Jia Y (2019a) Phase noise-induced coherence resonance in three dimension memristive Hindmarsh–Rose neuron model. Eur Phys J Spec Top 228(10):2101–2110

    Google Scholar 

  • Lu L, Ge M, Xu Y, Jia Y (2019b) Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh-Nagumo model. Physica A 535:122419

    Google Scholar 

  • Lu L, Jia Y, Kirunda JB, Xu Y, Ge M, Pei Q, Yang L (2019c) Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn 95(2):1673–1686

    Google Scholar 

  • Lu L, Jia Y, Xu Y, Ge M, Yang L, Zhan X (2019d) Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci China Technol Sci 62(3):427–440

    Google Scholar 

  • Lu L, Jia Y, Ge M, Xu Y, Li A (2020) Inverse stochastic resonance in Hodgkin–Huxley neural system driven by Gaussian and non-Gaussian colored noises. Nonlinear Dyn. https://doi.org/10.1007/s11071-020-05492-y

    Article  PubMed Central  Google Scholar 

  • Ma J, Huang L, Tang J, Ying H, Jin W (2012) Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin–Huxley neuronal networks. Commun Nonlinear Sci 17:4281–4293

    Google Scholar 

  • Ma J, Lv M, Zhou P, Xu Y, Tasawar H (2017) Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl Math Comput 307:321–328

    Google Scholar 

  • Ma J, Zhang G, Hayat T, Ren G (2018) Model electrical activity of neuron under electric field. Nonlinear Dyn 95(2):1585–1598

    Google Scholar 

  • Maio VD, Santillo S, Sorgente A, Vanacore P, Ventriglia F (2018) Influence of active synaptic pools on the single synaptic event. Cogn Neurodyn 12(4):1–12

    Google Scholar 

  • Mondal A, Upadhyay RK, Ma J, Yadav BK, Sharma SK, Mondal A (2019) Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn Neurodyn 13(4):393–407

    PubMed  Google Scholar 

  • Narahashi T, Moore JW (1968) Neuroactive agents and nerve membrane conductances. J Gen Physiol 51(5):93–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pikovsky AS, Kurths J (1997) Coherence resonance in a noise-driven excitable system. Phys Rev Lett 78(5):775–778

    CAS  Google Scholar 

  • Schmid G, Goychuk I, Hänggi P (2001) Stochastic resonance as a collective property of ion channel assemblies. Europhys Lett 56(1):22–28

    CAS  Google Scholar 

  • Schmid G, Goychuk I, Hänggi P (2003) Membrane clusters of ion channels: size effects for stochastic resonance. Springer, Berlin

    Google Scholar 

  • Schmid G, Goychuk I, Hänggi P (2004) Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin–Huxley model. Phys Biol 1(2):61–66

    CAS  PubMed  Google Scholar 

  • Wang R, Tsuda I, Zhang Z (2015) A new work mechanism on neuronal activity. Int J Neural Syst 25(3):1450037

    PubMed  Google Scholar 

  • Wang Y, Wang R, Xu X (2017) Neural energy supply-consumption properties based on Hodgkin–Huxley model. Neural Plast 2017:6207141

    PubMed  PubMed Central  Google Scholar 

  • Wang R, Wang Z, Zhu Z (2018a) The essence of neuronal activity from the consistency of two different neuron models. Nonlinear Dyn. https://doi.org/10.1007/s11071-018-4103-7

    Article  Google Scholar 

  • Wang Y, Xu X, Wang R (2018b) An energy model of place cell network in three dimensional space. Front Neurosci 12:264

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Cao Y, Huang T, Wen S (2019a) Passivity and passification of memristive neural networks with leakage term and time-varying delays. Appl Math Comput 361:294–310

    Google Scholar 

  • Wang Y, Xu X, Zhu Y, Wang R (2019b) Neural energy mechanism and neurodynamics of memory transformation. Nonlinear Dyn 97(1):697–714

    Google Scholar 

  • Wen S, Hu R, Yang Y, Huang T, Zeng Z, Song Y-D (2019a) Memristor-based echo state network with online least mean square. IEEE Trans Syst Man Cybern Syst 49(9):1787–1796

    Google Scholar 

  • Wen S, Xiao S, Yang Y, Yan Z, Zeng Z, Huang T (2019b) Adjusting learning rate of memristor-based multilayer neural networks via fuzzy method. IEEE Trans Comput Aided Des Integr Circ Syst 38(6):1084–1094

    Google Scholar 

  • White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci 23(3):131–137

    CAS  PubMed  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Jia Y, Ma J, Alsaedi A, Ahmad B (2017a) Synchronization between neurons coupled by memristor. Chaos Soliton Fract 104:435–442

    Google Scholar 

  • Xu Y, Ying H, Jia Y, Ma J, Hayat T (2017b) Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci Rep 7:43452

    PubMed  PubMed Central  Google Scholar 

  • Xu Y, Jia Y, Ge M, Lu L, Yang L, Zhan X (2018a) Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 283:196–204

    Google Scholar 

  • Xu Y, Jia Y, Kirunda JB, Shen J, Ge M, Lu L, Pei Q (2018b) Dynamic behaviors in coupled neuron system with the excitatory and inhibitory autapse under electromagnetic induction. Complexity 2018:3012743

    Google Scholar 

  • Xu Y, Jia Y, Ma J, Hayat T, Alsaedi A (2018c) Collective responses in electrical activities of neurons under field coupling. Sci Rep 8(1):1349

    PubMed  PubMed Central  Google Scholar 

  • Xu Y, Jia Y, Wang H, Liu Y, Wang P, Zhao Y (2019a) Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn 95(4):3237–3247

    Google Scholar 

  • Xu Y, Lu L, Ge M, Jia Y (2019b) Effects of temporally correlated noise on coherence resonance chimeras in FitzHugh–Nagumo neurons. Eur Phys J B 92(11):245

    CAS  Google Scholar 

  • Xu Y, Ma J, Zhan X, Yang L, Jia Y (2019c) Temperature effect on memristive ion channels. Cogn Neurodyn 13(6):601–611

    PubMed  Google Scholar 

  • Yang L, Liu W, Yi M, Wang C, Zhu Q, Zhan X, Jia Y (2012) Vibrational resonance induced by transition of phase-locking modes in excitable systems. Phys Rev E 86(1 Pt 2):016209

    Google Scholar 

  • Yao Y, Ma J (2018) Weak multiple oscillatory signals detection by sine-Wiener-noise-induced resonance in the FitzHugh–Nagumo neuron. Cogn Neurodyn 12(3):343–349

    PubMed  PubMed Central  Google Scholar 

  • Yao M, Wang R (2019) Neurodynamic analysis of Merkel cell-neurite complex transduction mechanism during tactile sensing. Cogn Neurodyn 13(3):293–302

    PubMed  Google Scholar 

  • Zhang T, Pan X, Xu X, Wang R (2019) A cortical model with multi-layers to study visual attentional modulation of neurons at the synaptic level. Cogn Neurodyn 13(6):579–599

    PubMed  Google Scholar 

  • Zheng H, Wang R, Qiao L, Du Y (2014) The molecular dynamics of neural metabolism during the action potential. Sci China Technol Sci 57(5):857–863

    CAS  Google Scholar 

  • Zhu Z, Wang R, Zhu F (2018) The energy coding of a structural neural network based on the Hodgkin–Huxley model. Front Neurosci 12:122

    PubMed  PubMed Central  Google Scholar 

  • Zhu F, Wang R, Pan X, Zhu Z (2019) Energy expenditure computation of a single bursting neuron. Cogn Neurodyn 13(1):75–87

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China Under Grant Under No. 11775091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Xu, Y., Wang, G. et al. Ionic channel blockage in stochastic Hodgkin–Huxley neuronal model driven by multiple oscillatory signals. Cogn Neurodyn 14, 569–578 (2020). https://doi.org/10.1007/s11571-020-09593-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09593-7

Keywords

Navigation